EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

被引:3
作者
Chang, Yanxun [1 ]
Zhang, Xiaoxiao [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
[2] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
基金
中国国家自然科学基金;
关键词
Frechet derivative; graph; nonlinear equation; KAZDAN-WARNER EQUATION; CONSTANT; GROWTH;
D O I
10.4134/JKMS.j200221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V;E) be a connected locally finite and weighted graph, Delta(p) be the p-th graph Laplacian. Consider the p-th nonlinear equation -Delta(p)u + h vertical bar u vertical bar- f (x, u) on G, where p > 2, h; f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Omega subset of V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator L-m,L-p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.
引用
收藏
页码:703 / 722
页数:20
相关论文
共 37 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[3]   Sharp Davies-Gaffney-Grigor'yan Lemma on graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Yau, Shing-Tung .
MATHEMATISCHE ANNALEN, 2017, 368 (3-4) :1429-1437
[4]   The dual Cheeger constant and spectra of infinite graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Jost, Juergen .
ADVANCES IN MATHEMATICS, 2014, 251 :147-194
[5]  
Buhler T., 2009, P 26 ANN INT C MACH, P81, DOI DOI 10.1145/1553374.1553385
[6]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[7]   Nodal domains of eigenvectors for 1-Laplacian on graphs [J].
Chang, K. C. ;
Shao, Sihong ;
Zhang, Dong .
ADVANCES IN MATHEMATICS, 2017, 308 :529-574
[8]   Spectrum of the 1-Laplacian and Cheeger's Constant on Graphs [J].
Chang, K. C. .
JOURNAL OF GRAPH THEORY, 2016, 81 (02) :167-207
[9]   THE 1-LAPLACIAN CHEEGER CUT: THEORY AND ALGORITHMS [J].
Chang, K. C. ;
Shao, Sihong ;
Zhang, Dong .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (05) :443-467
[10]   THE SPECTRUM OF THE 1-LAPLACE OPERATOR [J].
Chang, Kung Ching .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) :865-894