Advances in thermodynamic modelling of nanoparticles

被引:63
作者
Guisbiers, Gregory [1 ]
机构
[1] Univ Arkansas, Dept Phys & Astron, 2801 South Univ Ave, Little Rock, AR 72204 USA
关键词
Nano-thermodynamics; Tsallis entropy; non-extensivity; fluctuations; size effect; shape effect; MELTING-POINT DEPRESSION; DEPENDENT PHASE-DIAGRAM; NANO-ALLOY; BAND-GAP; STATISTICAL-MECHANICS; DEBYE TEMPERATURE; SMALL SYSTEMS; QUANTUM DOTS; SIZE; NANOALLOYS;
D O I
10.1080/23746149.2019.1668299
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Among all the computational techniques (Density Functional Theory, Molecular Dynamics, Monte-Carlo Simulations, Nanothermodynamics) used to investigate the properties of nanoparticles, nanothermodynamics is the most unusual one. Indeed, most people still thing that thermodynamics does not apply at the nanoscale; nonetheless, thermodynamic concepts can still be applied at the nanoscale to predict various properties of nanoparticles like melting temperature, energy bandgap ? In this review, we first introduce the fundamental concepts and methods of nanothermodynamics starting from Hill?s contributions to the most recent developments focusing specifically on the relationship between the material property and the following parameters as quantum statistics (Fermi-Dirac or Bose-Einstein), size and shape of the nanoparticle. [GRAPHICS] .
引用
收藏
页数:21
相关论文
共 119 条
[61]   Materials by numbers: Computations as tools of discovery [J].
Landman, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6671-6678
[62]   Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: A classical approach based on the regular solution model [J].
Lee, Joonho ;
Park, Joongchul ;
Tanaka, Toshihiro .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (02) :377-381
[63]   Size effects on the band-gap of semiconductor compounds [J].
Li, M. ;
Li, J. C. .
MATERIALS LETTERS, 2006, 60 (20) :2526-2529
[64]   Nanothermodynamics of metal nanoparticles [J].
Li, Zhen Hua ;
Truhlar, Donald G. .
CHEMICAL SCIENCE, 2014, 5 (07) :2605-2624
[65]   Size-dependent continuous binary solution phase diagram [J].
Liang, LH ;
Liu, D ;
Jiang, Q .
NANOTECHNOLOGY, 2003, 14 (04) :438-442
[66]   Ordering and surface segregation in Co 1-c Ptc nanoparticles: A theoretical study from surface alloys to nanoalloys [J].
Lopes, A. ;
Treglia, G. ;
Mottet, C. ;
Legrand, B. .
PHYSICAL REVIEW B, 2015, 91 (03)
[67]   A Link between Nano- and Classical Thermodynamics: Dissipation Analysis (The Entropy Generation Approach in Nano-Thermodynamics) [J].
Lucia, Umberto .
ENTROPY, 2015, 17 (03) :1309-1328
[68]   Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles [J].
Magnin, Y. ;
Zappelli, A. ;
Amara, H. ;
Ducastelle, F. ;
Bichara, C. .
PHYSICAL REVIEW LETTERS, 2015, 115 (20)
[69]   Mechanical Vibrations of Atomically Defined Metal Clusters: From Nano- to Molecular-Size Oscillators [J].
Maioli, Paolo ;
Stoll, Tatjana ;
Sauceda, Huziel E. ;
Valencia, Israel ;
Demessence, Aude ;
Bertorelle, Franck ;
Crut, Aurelien ;
Vallee, Fabrice ;
Garzon, Ignacio L. ;
Cerullo, Giulio ;
Del Fatti, Natalia .
NANO LETTERS, 2018, 18 (11) :6842-6849
[70]  
Mansoori G.A., 2005, Principles of nanotechnology: molecular-based study of condensed matter in small systems