Fractional Topological Insulators

被引:252
|
作者
Levin, Michael [1 ,2 ]
Stern, Ady [3 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93109 USA
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
关键词
QUANTUM HALL STATES;
D O I
10.1103/PhysRevLett.103.196803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze generalizations of two-dimensional topological insulators which can be realized in interacting, time reversal invariant electron systems. These states, which we call fractional topological insulators, contain excitations with fractional charge and statistics in addition to protected edge modes. In the case of s(z) conserving toy models, we show that a system is a fractional topological insulator if and only if sigma(sH)/e(*) is odd, where sigma(sH) is the spin-Hall conductance in units of e/2 pi, and e(*) is the elementary charge in units of e.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Robustness of a topological phase: Topological color code in a parallel magnetic field
    Jahromi, Saeed S.
    Kargarian, Mehdi
    Masoudi, S. Farhad
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2013, 87 (09)
  • [32] Anyonic symmetries and topological defects in Abelian topological phases: An application to the ADE classification
    Khan, Mayukh Nilay
    Teo, Jeffrey C. Y.
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2014, 90 (23):
  • [33] Universal symmetry-protected topological invariants for symmetry-protected topological states
    Hung, Ling-Yan
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [34] Boundary degeneracy of topological order
    Wang, Juven C.
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [35] Topological phases and quasiparticle braiding
    Read, Nicholas
    PHYSICS TODAY, 2012, 65 (07) : 38 - 43
  • [36] Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries
    Lan, Tian
    Kong, Liang
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2016, 94 (15)
  • [37] Symmetry-protected topological invariants of symmetry-protected topological phases of interacting bosons and fermions
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 89 (03)
  • [38] Geometric Test for Topological States of Matter
    Klevtsov, S.
    Zvonkine, D.
    PHYSICAL REVIEW LETTERS, 2022, 128 (03)
  • [39] Topological states in double monolayer graphene
    Wu, Ying-Hai
    SCIPOST PHYSICS, 2022, 13 (04):
  • [40] Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 90 (11):