Fractional Topological Insulators

被引:262
作者
Levin, Michael [1 ,2 ]
Stern, Ady [3 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93109 USA
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
关键词
QUANTUM HALL STATES;
D O I
10.1103/PhysRevLett.103.196803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze generalizations of two-dimensional topological insulators which can be realized in interacting, time reversal invariant electron systems. These states, which we call fractional topological insulators, contain excitations with fractional charge and statistics in addition to protected edge modes. In the case of s(z) conserving toy models, we show that a system is a fractional topological insulator if and only if sigma(sH)/e(*) is odd, where sigma(sH) is the spin-Hall conductance in units of e/2 pi, and e(*) is the elementary charge in units of e.
引用
收藏
页数:4
相关论文
共 14 条
[11]   FRACTIONAL QUANTUM HALL-EFFECT AND MULTIPLE AHARONOV-BOHM PERIODS [J].
THOULESS, DJ ;
GEFEN, Y .
PHYSICAL REVIEW LETTERS, 1991, 66 (06) :806-809
[12]   GROUND-STATE DEGENERACY OF THE FRACTIONAL QUANTUM HALL STATES IN THE PRESENCE OF A RANDOM POTENTIAL AND ON HIGH-GENUS RIEMANN SURFACES [J].
WEN, XG ;
NIU, Q .
PHYSICAL REVIEW B, 1990, 41 (13) :9377-9396
[13]   Topological orders and edge excitations in fractional quantum Hall states [J].
Wen, XG .
ADVANCES IN PHYSICS, 1995, 44 (05) :405-473
[14]   TOPOLOGICAL ORDER AND EDGE STRUCTURE OF V =1/2 QUANTUM HALL STATE [J].
WEN, XG .
PHYSICAL REVIEW LETTERS, 1993, 70 (03) :355-358