A bound for diameter of arithmetic hyperbolic orbifolds

被引:2
|
作者
Belolipetsky, Mikhail [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
Arithmetic hyperbolic orbifold; diameter; volume; Cheeger constant; VOLUME;
D O I
10.1007/s10711-021-00616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O be a closed n-dimensional arithmetic (real or complex) hyperbolic orbifold. We show that the diameter of O is bounded above by c(1) log vol(O) + c(2)/h(O), where h(O) is the Cheeger constant of O, vol(O) is its volume, and constants c1, c2 depend only on n.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [1] A bound for diameter of arithmetic hyperbolic orbifolds
    Mikhail Belolipetsky
    Geometriae Dedicata, 2021, 214 : 295 - 302
  • [2] Thickness of skeletons of arithmetic hyperbolic orbifolds
    Alpert, Hannah
    Belolipetsky, Mikhail
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (03) : 749 - 765
  • [3] A lower bound for the volumes of complex hyperbolic orbifolds
    X. Fu
    L. Li
    X. Wang
    Geometriae Dedicata, 2011, 155 : 21 - 30
  • [4] Lower bound for the volumes of quaternionic hyperbolic orbifolds
    Han, Minghua
    Xie, Baohua
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (01) : 47 - 56
  • [5] A lower bound for the volumes of complex hyperbolic orbifolds
    Fu, X.
    Li, L.
    Wang, X.
    GEOMETRIAE DEDICATA, 2011, 155 (01) : 21 - 30
  • [6] Homology bounds for hyperbolic orbifolds
    Senska, Hartwig
    GEOMETRIAE DEDICATA, 2023, 217 (01)
  • [7] Hyperbolic orbifolds of small volume
    Belolipetsky, Mikhail
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 837 - 851
  • [8] On volumes of quaternionic hyperbolic n-orbifolds
    Wensheng Cao
    Jianli Fu
    Geometriae Dedicata, 2019, 200 : 27 - 43
  • [9] On volumes of quaternionic hyperbolic n-orbifolds
    Cao, Wensheng
    Fu, Jianli
    GEOMETRIAE DEDICATA, 2019, 200 (01) : 27 - 43
  • [10] Lower bounds for the volume of hyperbolic n-orbifolds
    Adeboye, Ilesanmi
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 237 (01) : 1 - 19