Nowhere-zero flows in tensor product of graphs

被引:8
作者
Zhang, Zhao [1 ]
Zheng, Yirong
Mamut, Aygul
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xiamen Univ Technol, Dept Math & Phys, Xiamen 361005, Peoples R China
[3] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Henan, Peoples R China
[4] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
关键词
nowhere-zero flow; tensor product;
D O I
10.1002/jgt.20211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize graphs whose tensor product admit nowhere-zero 3-flow. The main result is: For two graphs G(1) and G(2) with delta(G1) >= 2 and G(2) not belonging to a well-characterized class of graphs, the tensor product of G(1) and G(2) admits a nowhere-zero 3-flow. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 8 条
[1]  
Bondy J.A., 2008, GRAD TEXTS MATH
[2]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[3]   A theorem on integer flows on Cartesian products of graphs [J].
Imrich, W ;
Skrekovski, R .
JOURNAL OF GRAPH THEORY, 2003, 43 (02) :93-98
[4]   Nowhere-zero 3-flows in products of graphs [J].
Shu, JL ;
Zhang, CQ .
JOURNAL OF GRAPH THEORY, 2005, 50 (01) :79-89
[5]   A CONTRIBUTION TO THE THEORY OF CHROMATIC POLYNOMIALS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01) :80-91
[6]  
TUTTE WT, 1954, P LOND MATH SOC, V51, P474
[7]  
West D. B., 2001, Introduction to Graph Theory, V2nd
[8]  
Zhang C.-Q., 1997, INTEGER FLOWS CYCLE