Multi-Grid Back-Projection Networks

被引:2
作者
Michelini, Pablo Navarrete [1 ]
Chen, Wenbin [1 ]
Liu, Hanwen [1 ]
Zhu, Dan [1 ]
Jiang, Xingqun [1 ]
机构
[1] BOE Technol Grp Co Ltd, Dept Artificial Intelligence, Beijing, Peoples R China
关键词
Image resolution; Videos; Standards; Distortion; Training; Technological innovation; Image reconstruction; Multigrid; iterative backprojection; super resolution; convolutional networks;
D O I
10.1109/JSTSP.2021.3049641
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-grid back-projection (MGBP) is a fully-convolutional network architecture that can learn to restore images and videos with upscaling artifacts. Using the same strategy of multi-grid partial differential equation (PDE) solvers this multiscale architecture scales computational complexity efficiently with increasing output resolutions. The basic processing block is inspired in the iterative back-projection (IBP) algorithm and constitutes a type of cross-scale residual block with feedback from low resolution references. The architecture performs in par with state-of-the-arts alternatives for regression targets that aim to recover an exact copy of a high resolution image or video from which only a downscale image is known. A perceptual quality target aims to create more realistic outputs by introducing artificial changes that can be different from a high resolution original content as long as they are consistent with the low resolution input. For this target we propose a strategy using noise inputs in different resolution scales to control the amount of artificial details generated in the output. The noise input controls the amount of innovation that the network uses to create artificial realistic details. The effectiveness of this strategy is shown in benchmarks and it is explained as a particular strategy to traverse the perception-distortion plane.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 76 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]  
Algazi V. R., 1991, P IEEE INT C AC SPEE, V4
[3]   The 2018 PIRM Challenge on Perceptual Image Super-Resolution [J].
Blau, Yochai ;
Mechrez, Roey ;
Timofte, Radu ;
Michaeli, Tomer ;
Zelnik-Manor, Lihi .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 :334-355
[4]   The Perception-Distortion Tradeoff [J].
Blau, Yochai ;
Michaeli, Tomer .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6228-6237
[5]  
Chen J., 2020, ARXIV200302115
[6]   Generative Adversarial Network-Based Image Super-Resolution Using Perceptual Content Losses [J].
Cheon, Manri ;
Kim, Jun-Hyuk ;
Choi, Jun-Ho ;
Lee, Jong-Seok .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 :51-62
[7]   Deep learning-based image super-resolution considering quantitative and perceptual quality [J].
Choi, Jun-Ho ;
Kim, Jun-Hyuk ;
Cheon, Manri ;
Lee, Jong-Seok .
NEUROCOMPUTING, 2020, 398 (398) :347-359
[8]  
Cormen T. H., 2009, Introduction To Algorithms, V3rd
[9]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[10]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199