On the solution of the fully fuzzy Sylvester matrix equation

被引:3
作者
Keyanpour, Mohammad [1 ]
Salkuyeh, Davod Khojasteh [1 ]
Moosaei, Hossein [2 ]
Ketabchi, Saeed [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
[2] Univ Bojnord, Dept Math, Bojnord, Iran
关键词
Fuzzy Sylvester equation; system of linear equations; trapezoidal fuzzy number; M-matrix;
D O I
10.1080/02286203.2018.1548119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to propose a method for solving fully fuzzy Sylvester equation (FFSE) AX+XB=C, where A, B and C are fuzzy matrices. By using of alpha -cutting, FFSE is transformed to a generalized Sylvester matrix equation, and then to a crisp system of linear equations. Existence and uniqueness of a solution to this system are investigated. Two numerical examples are given to illustrate the proposed method.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 15 条
[1]  
Allahviranloo T, 2008, APPL APPL MATH, V3, P77
[2]  
Axelsson O., 1996, Iterative Solution Methods
[3]  
Benner P., 2004, P 16 INT S MATH THEO
[4]   Large-scale matrix equations of special type [J].
Benner, Peter .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (09) :747-754
[5]  
Datta B. N., 1986, Computational and Combinatorial Methods in Systems Theory, P201
[6]   Fuzzy linear systems [J].
Friedman, M ;
Ming, M ;
Kandel, A .
FUZZY SETS AND SYSTEMS, 1998, 96 (02) :201-209
[7]   ELEMENTARY FUZZY CALCULUS [J].
GOETSCHEL, R ;
VOXMAN, W .
FUZZY SETS AND SYSTEMS, 1986, 18 (01) :31-43
[8]   The solution of fuzzy Sylvester matrix equation [J].
He, Qixiang ;
Hou, Liangshao ;
Zhou, Jieyong .
SOFT COMPUTING, 2018, 22 (19) :6515-6523
[9]   THE OPTIMAL PROJECTION EQUATIONS FOR FIXED-ORDER DYNAMIC COMPENSATION [J].
HYLAND, DC ;
BERNSTEIN, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (11) :1034-1037
[10]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317