Synaptic patterning and the timescales of cortical dynamics

被引:29
作者
Duarte, Renato [1 ,2 ,3 ,4 ,5 ,6 ]
Seeholzer, Alexander [7 ,8 ]
Zilles, Karl [9 ,10 ]
Morrison, Abigail [1 ,2 ,3 ,4 ,11 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, Julich, Germany
[2] Julich Res Ctr, Inst Adv Simulat IAS 6, Julich, Germany
[3] Julich Res Ctr, JARA BRAIN Inst 1, Julich, Germany
[4] Albert Ludwig Univ Freiburg, Bernstein Ctr Freiburg, Freiburg, Germany
[5] Albert Ludwig Univ Freiburg, Fac Biol, Freiburg, Germany
[6] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh, Midlothian, Scotland
[7] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
[8] Ecole Polytech Fed Lausanne, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland
[9] Julich Res Ctr, Inst Neurosci & Med INM 1, Julich, Germany
[10] JARA BRAIN, Aachen, Germany
[11] Ruhr Univ Bochum, Fac Psychol, Inst Cognit Neurosci, Bochum, Germany
基金
瑞士国家科学基金会;
关键词
INHIBITORY SPIKING NEURONS; HUMAN VISUAL-CORTEX; PREFRONTAL CORTEX; AUDITORY-CORTEX; CEREBRAL-CORTEX; WORKING-MEMORY; HUMAN BRAIN; BALANCED NETWORKS; PYRAMIDAL CELLS; PRIMATE CORTEX;
D O I
10.1016/j.conb.2017.02.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neocortical circuits, as large heterogeneous recurrent networks, can potentially operate and process signals at multiple timescales, but appear to be differentially tuned to operate within certain temporal receptive windows. The modular and hierarchical organization of this selectivity mirrors anatomical and physiological relations throughout the cortex and is likely determined by the regional electrochemical composition. Being consistently patterned and actively regulated, the expression of molecules involved in synaptic transmission constitutes the most significant source of laminar and regional variability. Due to their complex kinetics and adaptability, synapses form a natural primary candidate underlying this regional temporal selectivity. The ability of cortical networks to reflect the temporal structure of the sensory environment can thus be regulated by evolutionary and experience-dependent processes.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 106 条
[21]   Efficient codes and balanced networks [J].
Deneve, Sophie ;
Machens, Christian K. .
NATURE NEUROSCIENCE, 2016, 19 (03) :375-382
[22]   Dynamic stability of sequential stimulus representations in adapting neuronal networks [J].
Duarte, Renato C. F. ;
Morrison, Abigail .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2014, 8
[23]   Computational significance of transient dynamics in cortical networks [J].
Durstewitz, Daniel ;
Deco, Gustavo .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2008, 27 (01) :217-227
[24]   Mechanism for top-down control of working memory capacity [J].
Edin, Fredrik ;
Klingberg, Torkel ;
Johansson, Par ;
McNab, Fiona ;
Tegner, Jesper ;
Compte, Albert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) :6802-6807
[25]   Organizational Principles of Human Visual Cortex Revealed by Receptor Mapping [J].
Eickhoff, Simon B. ;
Rottschy, Claudia ;
Kujovic, Milenko ;
Palomero-Gallagher, Nicola ;
Zilles, Karl .
CEREBRAL CORTEX, 2008, 18 (11) :2637-2645
[26]   Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex [J].
Eickhoff, Simon B. ;
Rottschy, Claudia ;
Zilles, Karl .
BRAIN STRUCTURE & FUNCTION, 2007, 212 (3-4) :255-267
[27]   Activated cortical states: Experiments, analyses and models [J].
El Boustani, Saral ;
Pospischil, Martin ;
Rudolph-Lilith, Michelle ;
Destexhe, Alain .
JOURNAL OF PHYSIOLOGY-PARIS, 2007, 101 (1-3) :99-109
[28]   Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species [J].
Elston, Guy N. ;
Benavides-Piccione, Ruth ;
Elston, Alejandra ;
Manger, Paul R. ;
DeFelipe, Javier .
FRONTIERS IN NEUROANATOMY, 2011, 5 :1-17
[29]   Action understanding and active inference [J].
Friston, Karl J. ;
Mattout, Jeremie ;
Kilner, James .
BIOLOGICAL CYBERNETICS, 2011, 104 (1-2) :137-160
[30]   Learning and inference in the brain [J].
Friston, KJ .
NEURAL NETWORKS, 2003, 16 (09) :1325-1352