Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt

被引:43
作者
Yang, Ya-Ping [1 ]
Huang, An-Chi [2 ]
Tang, Yan [2 ]
Liu, Ye-Cheng [1 ]
Wu, Zhi-Hao [2 ]
Zhou, Hai-Lin [2 ]
Li, Zhi-Ping [2 ]
Shu, Chi-Min [3 ]
Jiang, Jun-Cheng [2 ]
Xing, Zhi-Xiang [2 ]
机构
[1] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Environm & Safety Engn, Changzhou 213164, Jiangsu, Peoples R China
[3] Natl Yunlin Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Touliu 64002, Yunlin, Taiwan
关键词
LiTFSI-LiODFB dual-salt carbonate electrolyte; thermal analysis; accelerated rate calorimetry; differential scanning calorimetry; autocatalytic models; apparent activation energy; ALUMINUM CORROSION; HIGH-VOLTAGE; ACCELERATING RATE; HIGH-SAFETY; LITFSI; COMPOSITE; CARBONATE; LIODFB; DEGRADATION; PERFORMANCE;
D O I
10.3390/polym13050707
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lithium-ion batteries with conventional LiPF6 carbonate electrolytes are prone to failure at high temperature. In this work, the thermal stability of a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate (LiODFB) in carbonate solvents was analyzed by accelerated rate calorimetry (ARC) and differential scanning calorimetry (DSC). LiTFSI-LiODFB dual-salt carbonate electrolyte decomposed when the temperature exceeded 138.5 degrees C in the DSC test and decomposed at 271.0 degrees C in the ARC test. The former is the onset decomposition temperature of the solvents in the electrolyte, and the latter is the LiTFSI-LiODFB dual salts. Flynn-Wall-Ozawa, Starink, and autocatalytic models were applied to determine pyrolysis kinetic parameters. The average apparent activation energy of the dual-salt electrolyte was 53.25 kJ/mol. According to the various model fitting, the thermal decomposition process of the dual-salt electrolyte followed the autocatalytic model. The results showed that the LiTFSI-LiODFB dual-salt electrolyte is significantly better than the LiPF6 electrolyte in terms of thermal stability.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 45 条
  • [1] Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries
    Bolloli, Marco
    Alloin, Fannie
    Kalhoff, Julian
    Bresser, Dominic
    Passerini, Stefano
    Judeinstein, Patrick
    Lepretre, Jean-Claude
    Sanchez, Jean-Yves
    [J]. ELECTROCHIMICA ACTA, 2015, 161 : 159 - 170
  • [2] Thermal stability of LiPF6-EC:EMC electrolyte for lithium ion batteries
    Botte, GG
    White, RE
    Zhang, ZM
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 570 - 575
  • [3] Ionic liquid electrolytes for high-voltage, lithium-ion batteries
    Brutti, S.
    Simonetti, E.
    De Francesco, M.
    Sarra, A.
    Paolone, A.
    Palumbo, O.
    Fantini, S.
    Lin, R.
    Falgayrat, A.
    Choi, H.
    Kuenzel, M.
    Passerini, S.
    Appetecchi, G. B.
    [J]. JOURNAL OF POWER SOURCES, 2020, 479 (479)
  • [4] Evaluation for the thermokinetics of the autocatalytic reaction of cumene hydroperoxide mixed with phenol through isothermal approaches and simulations
    Cao, Chen-Rui
    Liu, Shang-Hao
    Das, Mitali
    Shu, Chi-Min
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 117 : 426 - 438
  • [5] Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes
    Chen, Shimou
    Wen, Kaihua
    Fan, Juntian
    Bando, Yoshio
    Golberg, Dmitri
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) : 11631 - 11663
  • [6] Ester based electrolyte with lithium bis(trifluoromethane sulfonyl) imide salt for electrochemical storage devices: Physicochemical and electrochemical characterization
    Dahbi, Mouad
    Ghamouss, Fouad
    Tran-Van, Francois
    Lemordant, Daniel
    Anouti, Meriem
    [J]. ELECTROCHIMICA ACTA, 2012, 86 : 287 - 293
  • [7] Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage
    Dahbi, Mouad
    Ghamouss, Fouad
    Tran-Van, Francois
    Lemordant, Daniel
    Anouti, Meriem
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9743 - 9750
  • [8] ElBellihi AA, 2012, B KOREAN CHEM SOC, V33, P2949
  • [9] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    [J]. APPLIED ENERGY, 2019, 246 : 53 - 64
  • [10] Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions
    Gaulupeau, B.
    Delobel, B.
    Cahen, S.
    Fontana, S.
    Herold, C.
    [J]. JOURNAL OF POWER SOURCES, 2017, 342 : 808 - 815