Synchronization Bound for Networks of Nonlinear Oscillators

被引:0
作者
Davison, Elizabeth N. [1 ]
Dey, Biswadip [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2016年
基金
美国国家科学基金会;
关键词
Complex Networked Systems; Nonlinear Oscillators; Synchronization; Lyapunov Analysis; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of synchronization phenomena in networks of coupled nonlinear oscillators plays a pivotal role in understanding the behavior of biological and mechanical systems with oscillatory properties. We derive a general sufficient condition for synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov function, and we obtain conditions under which synchronization is guaranteed for a network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model parameter regimes. We incorporate two types of heterogeneity into our study of FN oscillators: 1) the network structure is arbitrary and 2) the oscillators have non-identical external inputs. Understanding the effects of heterogeneities on synchronization of oscillators with inputs provides a promising step toward control of key aspects of networked oscillatory systems.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [41] Dynamical consistency in networks of nonlinear oscillators
    Vera-avila, V. P.
    Sevilla-Escoboza, J. R.
    Duron, R. R. Rivera
    Buldu, J. M.
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [42] Synchronization of Kuramoto oscillators in small-world networks
    Zhang, Yaofeng
    Xiao, Renbin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 33 - 40
  • [43] Computing with networks of nonlinear mechanical oscillators
    Coulombe, Jean C.
    York, Mark C. A.
    Sylvestre, Julien
    PLOS ONE, 2017, 12 (06):
  • [44] The Emergence of Hyperchaos and Synchronization in Networks with Discrete Periodic Oscillators
    Arellano-Delgado, Adrian
    Martha Lopez-Gutierrez, Rosa
    Angel Murillo-Escobar, Miguel
    Cardoza-Avendano, Liliana
    Cruz-Hernandez, Cesar
    ENTROPY, 2017, 19 (08):
  • [45] Global synchronization of partially forced Kuramoto oscillators on networks
    Moreira, Carolina A.
    de Aguiar, Marcus A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 514 : 487 - 496
  • [46] Synchronization Detection in Networks of Coupled Oscillators for Pattern Recognition
    Vodenicarevic, Damir
    Locatelli, Nicolas
    Grollier, Julie
    Querlioz, Damien
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2015 - 2022
  • [47] Stability and multistability of synchronization in networks of coupled phase oscillators
    Zhai, Yun
    Wang, Xuan
    Xiao, Jinghua
    Zheng, Zhigang
    CHINESE PHYSICS B, 2023, 32 (06)
  • [48] Synchronization in multiplex networks of chaotic oscillators with frequency mismatch
    Shepelev, I. A.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [49] INTERACTING OSCILLATORS IN COMPLEX NETWORKS: SYNCHRONIZATION AND THE EMERGENCE OF SCALE-FREE TOPOLOGIES
    Almendral, J. A.
    Leyva, I.
    Sendina-Nadal, I.
    Boccaletti, S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03): : 753 - 763
  • [50] Synchronization of networks of chaotic oscillators: Structural and dynamical datasets
    Sevilla-Escoboza, Ricardo
    Buldu, Javier M.
    DATA IN BRIEF, 2016, 7 : 1185 - 1189