Synchronization Bound for Networks of Nonlinear Oscillators

被引:0
作者
Davison, Elizabeth N. [1 ]
Dey, Biswadip [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2016年
基金
美国国家科学基金会;
关键词
Complex Networked Systems; Nonlinear Oscillators; Synchronization; Lyapunov Analysis; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of synchronization phenomena in networks of coupled nonlinear oscillators plays a pivotal role in understanding the behavior of biological and mechanical systems with oscillatory properties. We derive a general sufficient condition for synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov function, and we obtain conditions under which synchronization is guaranteed for a network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model parameter regimes. We incorporate two types of heterogeneity into our study of FN oscillators: 1) the network structure is arbitrary and 2) the oscillators have non-identical external inputs. Understanding the effects of heterogeneities on synchronization of oscillators with inputs provides a promising step toward control of key aspects of networked oscillatory systems.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [31] Structural Analysis of Synchronization in Networks of Linear Oscillators
    Tuna, S. Emre
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3537 - 3544
  • [32] Synchronization phenomena in neural networks of hard oscillators
    Bonnin, Michele
    Lanza, Valentina
    Corinto, Fernando
    Gilli, Marco
    BIOELECTRONICS, BIOMEDICAL, AND BIOINSPIRED SYSTEMS V AND NANOTECHNOLOGY V, 2011, 8068
  • [33] Synchronization of networks of oscillators with distributed delay coupling
    Kyrychko, Y. N.
    Blyuss, K. B.
    Schoell, E.
    CHAOS, 2014, 24 (04)
  • [34] Cluster synchronization for networks of generic linear systems and nonlinear oscillators via intermittent pinning control
    Qin, Jiahu
    Ma, Qichao
    Gao, Huijun
    Zheng, Wei Xing
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 826 - 831
  • [35] Synchronization effects in networks of stochastic bistable oscillators
    Anishchenko, VS
    Sosnovtseva, OV
    Kopejkin, AS
    Matujshkin, DD
    Klimshin, A
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) : 469 - 476
  • [36] Synchronization of nonlinearly coupled networks of Chua oscillators
    Feketa, P.
    Schaum, A.
    Meurer, T.
    Michaelis, D.
    Ochs, K.
    IFAC PAPERSONLINE, 2019, 52 (16): : 628 - 633
  • [37] Chaotic synchronization of regular and irregular complex networks with fractional order oscillators
    Angulo-Guzman, Sara
    Posadas-Castillo, Cornelio
    Angel Platas-Garza, Miguel
    Alejandro Diaz-Romero, David
    Lopez-Mancilla, Didier
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (04) : 1114 - 1123
  • [38] Synchronization of Nonlinear Dynamical Networks With Heterogeneous Impulses
    Zhang, Wenbing
    Tang, Yang
    Wu, Xiaotai
    Fang, Jian-An
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (04) : 1220 - 1228
  • [39] Design of Optimal Coupling Gains for Synchronization of Nonlinear Oscillators
    Purba, Victor
    Wu, Xiaofan
    Sinha, Mohit
    Dhople, Sairaj V.
    Jovanovic, Mihailo R.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1310 - 1315
  • [40] Synchronization of networked oscillators under nonlinear integral coupling
    Pavlov, Alexey
    Proskurnikov, Anton V.
    Steur, Erik
    de Wouw, Nathan van
    IFAC PAPERSONLINE, 2018, 51 (33): : 56 - 61