Synchronization Bound for Networks of Nonlinear Oscillators

被引:0
作者
Davison, Elizabeth N. [1 ]
Dey, Biswadip [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2016年
基金
美国国家科学基金会;
关键词
Complex Networked Systems; Nonlinear Oscillators; Synchronization; Lyapunov Analysis; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of synchronization phenomena in networks of coupled nonlinear oscillators plays a pivotal role in understanding the behavior of biological and mechanical systems with oscillatory properties. We derive a general sufficient condition for synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov function, and we obtain conditions under which synchronization is guaranteed for a network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model parameter regimes. We incorporate two types of heterogeneity into our study of FN oscillators: 1) the network structure is arbitrary and 2) the oscillators have non-identical external inputs. Understanding the effects of heterogeneities on synchronization of oscillators with inputs provides a promising step toward control of key aspects of networked oscillatory systems.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [21] SYNCHRONIZATION AND TRANSIENT STABILITY IN POWER NETWORKS AND NONUNIFORM KURAMOTO OSCILLATORS
    Doerfler, Florian
    Bullo, Francesco
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1616 - 1642
  • [22] Synchronization limit of weakly forced nonlinear oscillators
    Tanaka, Hisa-Aki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (40)
  • [23] Synchronization transition in degenerate optical parametric oscillators induced by nonlinear coupling
    Wang, Chun-Ni
    Li, Shi-Rong
    Ma, Jun
    Jin, Wu-Yin
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 647 - 654
  • [24] Effects of degree correlation on the synchronization of networks of oscillators
    Di Bernardo, M.
    Garofalo, F.
    Sorrentino, F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10): : 3499 - 3506
  • [25] Synchronization in complex networks of phase oscillators: A survey
    Doerfler, Florian
    Bullo, Francesco
    AUTOMATICA, 2014, 50 (06) : 1539 - 1564
  • [26] SYNCHRONIZATION IN NETWORKS OF GENETIC OSCILLATORS WITH DELAYED COUPLING
    Li, Ping
    Lam, James
    ASIAN JOURNAL OF CONTROL, 2011, 13 (05) : 713 - 725
  • [27] Synchronization or cluster synchronization in coupled Van der Pol oscillators networks with different topological types
    Shuai, Wang
    Yong, Li
    PHYSICA SCRIPTA, 2022, 97 (03)
  • [28] Synchronization of Kuramoto oscillators in random complex networks
    Li, Ping
    Yi, Zhang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) : 1669 - 1674
  • [29] Synchronization of nonidentical phase oscillators in directed networks
    Um, Jaegon
    Lee, Sung-Ik
    Kim, Beom Jun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (02) : 491 - 496
  • [30] Synchronization of machine learning oscillators in complex networks
    Weng, Tongfeng
    Chen, Xiaolu
    Ren, Zhuoming
    Yang, Huijie
    Zhang, Jie
    Small, Michael
    INFORMATION SCIENCES, 2023, 630 : 74 - 81