Synchronization Bound for Networks of Nonlinear Oscillators

被引:0
|
作者
Davison, Elizabeth N. [1 ]
Dey, Biswadip [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2016年
基金
美国国家科学基金会;
关键词
Complex Networked Systems; Nonlinear Oscillators; Synchronization; Lyapunov Analysis; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of synchronization phenomena in networks of coupled nonlinear oscillators plays a pivotal role in understanding the behavior of biological and mechanical systems with oscillatory properties. We derive a general sufficient condition for synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov function, and we obtain conditions under which synchronization is guaranteed for a network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model parameter regimes. We incorporate two types of heterogeneity into our study of FN oscillators: 1) the network structure is arbitrary and 2) the oscillators have non-identical external inputs. Understanding the effects of heterogeneities on synchronization of oscillators with inputs provides a promising step toward control of key aspects of networked oscillatory systems.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [1] Experiments on synchronization in networks of nonlinear oscillators with dynamic links
    de Magistris, Massimiliano
    di Bernardo, Mario
    Petrarca, Carlo
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2013, 4 (04): : 462 - 472
  • [2] Synchronization of nonlinear oscillators over networks with dynamic links
    Casadei, G.
    Marconi, L.
    De Persis, C.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6184 - 6189
  • [3] Exponential Synchronization of Complex Networks of Linear Systems and Nonlinear Oscillators: A Unified Analysis
    Qin, Jiahu
    Gao, Huijun
    Zheng, Wei Xing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (03) : 510 - 521
  • [4] Pinning Synchronization in Heterogeneous Networks of Harmonic Oscillators
    Wang, Zhengxin
    Fan, Jingbo
    Jiang, He
    He, Haibo
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 836 - 845
  • [5] Synchronization Assessment in Power Networks and Coupled Oscillators
    Doerfler, Florian
    Chertkov, Michael
    Bullo, Francesco
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4998 - 5003
  • [6] Synchronization of oscillators in complex networks
    Pecora, Louis M.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1175 - 1198
  • [7] Synchronization of oscillators in complex networks
    Louis M. Pecora
    Pramana, 2008, 70 : 1175 - 1198
  • [8] Synchronization of Nonlinear Oscillators in an LTI Electrical Power Network
    Johnson, Brian B.
    Dhople, Sairaj V.
    Hamadeh, Abdullah O.
    Krein, Philip T.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (03) : 834 - 844
  • [9] An experimental study on synchronization of nonlinear oscillators with Huygens' coupling
    Pena-Ramirez, J.
    Fey, R. H. B.
    Nijmeijer, H.
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (02): : 128 - 142
  • [10] Synchronization of Networked Harmonic Oscillators under Nonlinear Protocols
    Cheng, Shan
    Zhang, Gang
    Xiang, Lan
    Zhou, Jin
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 1693 - 1698