A Stabilizing Sub-Optimal Model Predictive Control for Quasi-Linear Parameter Varying Systems
被引:24
|
作者:
Mate, Sammyak
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, IndiaIndian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, India
Mate, Sammyak
[1
]
Kodamana, Hariprasad
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, IndiaIndian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, India
Kodamana, Hariprasad
[2
]
Bhartiya, Sharad
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, IndiaIndian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, India
Bhartiya, Sharad
[3
]
Nataraj, P. S. V.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, IndiaIndian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, India
Nataraj, P. S. V.
[1
]
机构:
[1] Indian Inst Technol, Interdisciplinary Program Syst & Control Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
[3] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
来源:
IEEE CONTROL SYSTEMS LETTERS
|
2020年
/
4卷
/
02期
关键词:
Q-LPV affine systems;
model predictive control;
stability;
MPC;
multiple linear models;
D O I:
10.1109/LCSYS.2019.2937921
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Quasi-Linear Parameter Varying (Q-LPV) systems are often obtained as convex combinations of LTI models and have been widely applied for the control of nonlinear systems. An attractive feature is that the model can be adapted online via state or input dependent scheduling parameters to reflect the nonlinear system dynamics while retaining the overall linear structure for design purposes. In the context of Model Predictive Control (MPC), it is desirable that the online optimization problem is a Quadratic Program (QP), which can be easily solved. However, an impediment occurs when using Q-LPV models with MPC: the variation of the scheduling parameters over the prediction horizon casts the online optimization problem into a Nonlinear Program (NLP), which is computationally difficult. Thus the benefits of using the Q-LPV model predictions in MPC are lost. A QP based sub-optimal MPC is obtained if the Q-LPV parameters are treated as constant or frozen over the prediction horizon and updated upon availability of a new measurement at each sampling instant. However, the stability of such a sub-optimal Q-LPV MPC is not clear. In this letter, we consider a class of Q-LPV systems along with an affine term (Q-LPV-A), represented as a polytope with vertices, which corresponds to a piecewise-affine model and examine stability of the quadratic, sub-optimal MPC when the Q-LPV scheduling parameters are maintained constant over the prediction horizon. We derive a design condition for obtaining a stabilizing MPC law for Q-LPV systems. These aspects are illustrated using the Van-de-Vusse benchmark example.
机构:
Univ Fed Santa Catarina, Dept Autom & Sist DAS, Renewable Energy Res Grp GPER, Florianopolis, SC, BrazilUniv Fed Santa Catarina, Dept Autom & Sist DAS, Renewable Energy Res Grp GPER, Florianopolis, SC, Brazil
Morato, Marcelo M.
Normey-Rico, Julio E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Dept Autom & Sist DAS, Renewable Energy Res Grp GPER, Florianopolis, SC, BrazilUniv Fed Santa Catarina, Dept Autom & Sist DAS, Renewable Energy Res Grp GPER, Florianopolis, SC, Brazil
Normey-Rico, Julio E.
Sename, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Grenoble INP, GIPSA Lab, CNRS,Inst Engn, F-38000 Grenoble, FranceUniv Fed Santa Catarina, Dept Autom & Sist DAS, Renewable Energy Res Grp GPER, Florianopolis, SC, Brazil