Global actions of Lie symmetries for the nonlinear heat equation

被引:4
作者
Sepanski, Mark R. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Lie symmetry; Nonlinear heat equation; Global action; PARTIAL-DIFFERENTIAL-EQUATIONS; REPRESENTATION-THEORY;
D O I
10.1016/j.jmaa.2009.06.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By restricting to a natural class of functions, we show that the Lie point symmetries of the nonlinear heat equation exponentiate to a global action of the corresponding Lie group. Remarkably, in most of the cases, the action turns out to be linear. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 21 条
[11]  
Knapp A. W., 1986, Princeton Mathematical Series, V36
[12]  
Lie S., 1891, Vorlesungen uber differentialgleichungen mit bekannten infinitesimalen transformationen
[13]  
Lie S., 1881, Arch. Math., V6, P328, DOI DOI 10.1016/0167-2789(90)90123-7
[14]  
Olver PJ., 2000, Applications of Lie Groups to Differential Equations
[15]  
Osviannikov L., 1978, GROUP ANAL DIFFERENT
[16]  
OSVIANNIKOV LV, 1959, DOKL AKAD NAUK SSSR, V125, P492
[17]  
OVSIANNIKOV LV, 1962, GRUPPOVYE SVOYSTVA D
[18]  
Rogers C., 1989, NONLINEAR BOUNDARY V
[19]  
Sepanski M. R., SYMMETRY ANAL UNPUB
[20]   On global SL(2, R) symmetries of differential operators [J].
Sepanski, MR ;
Stanke, RJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (01) :1-21