Global actions of Lie symmetries for the nonlinear heat equation

被引:4
作者
Sepanski, Mark R. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Lie symmetry; Nonlinear heat equation; Global action; PARTIAL-DIFFERENTIAL-EQUATIONS; REPRESENTATION-THEORY;
D O I
10.1016/j.jmaa.2009.06.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By restricting to a natural class of functions, we show that the Lie point symmetries of the nonlinear heat equation exponentiate to a global action of the corresponding Lie group. Remarkably, in most of the cases, the action turns out to be linear. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 21 条
[1]  
Bluman G.W., 1989, Symmetries and differential equations
[2]  
Bluman G. W., 1974, Appl. Math. Sci., V13
[3]   All solutions of standard symmetric linear partial differential equations have classical Lie symmetry [J].
Broadbridge, P ;
Arrigo, DJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :109-122
[4]   Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations [J].
Cherniha, Roman ;
Serov, Mykola ;
Rassokha, Inna .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1363-1379
[5]   THE SYMMETRY GROUPS OF LINEAR PARTIAL-DIFFERENTIAL EQUATIONS AND REPRESENTATION-THEORY .1. [J].
CRADDOCK, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (01) :202-247
[6]  
Craddock M, 2000, J DIFFER EQUATIONS, V166, P107, DOI 10.1066/jdeq.2000.3786
[7]  
Dresner L., 1983, SIMILARITY SOLUTIONS
[8]  
Hill J M., 1992, Differential Equations and Group Methods for Scientists and Engineers
[9]  
Hunziker M., ARXIV09012280V1
[10]  
IBRAGIMOV NH, 1994, CRC HDB LIE GROUP AN, V1