6D Object Pose Estimation With Color/Geometry Attention Fusion

被引:0
|
作者
Yuan, Honglin [1 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, NL-3584 CC Utrecht, Netherlands
关键词
D O I
10.1109/icarcv50220.2020.9305469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The 6D object pose is widely applied in robotic grasping, virtual reality and visual navigation. However, heavy occlusion, changing light conditions and cluttered scenes make this problem challenging. To address these issues, we propose a novel approach that effectively extracts color and depth features from RGB-D images considering the local and global geometric relationships. After that, we apply a graph attention mechanism to fully exploit representations between these features and then fuse them together to predict the 6D pose of a given object. The evaluation results indicate that our method significantly improves the accuracy of the estimated 6D pose and achieves the state-of-the-art performance on LineMOD, YCB-Video, and a new dataset. Ablation studies demonstrate the effect of our network modules.
引用
收藏
页码:529 / 535
页数:7
相关论文
共 50 条
  • [21] Attention-guided RGB-D Fusion Network for Category-level 6D Object Pose Estimation
    Wang, Hao
    Li, Weiming
    Kim, Jiyeon
    Wang, Qiang
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10651 - 10658
  • [22] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [23] 6D Object Pose Estimation Based on Cross-Modality Feature Fusion
    Jiang, Meng
    Zhang, Liming
    Wang, Xiaohua
    Li, Shuang
    Jiao, Yijie
    SENSORS, 2023, 23 (19)
  • [24] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Chen, Tao
    Gu, Dongbing
    COGNITIVE COMPUTATION, 2022, 14 (02) : 702 - 713
  • [25] CSA6D: Channel-Spatial Attention Networks for 6D Object Pose Estimation
    Tao Chen
    Dongbing Gu
    Cognitive Computation, 2022, 14 : 702 - 713
  • [26] Prior Geometry Guided Direct Regression Network for Monocular 6D Object Pose Estimation
    Liu, Chongpei
    Sun, Wei
    Zhang, Keyi
    Liu, Jian
    Zhang, Xing
    Fan, Shimeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6241 - 6246
  • [27] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [28] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [29] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [30] GCCN: Geometric Constraint Co-attention Network for 6D Object Pose Estimation
    Wen, Yongming
    Fang, Yiquan
    Cai, Junhao
    Tung, Kimwa
    Cheng, Hui
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2671 - 2679