Shannon and entanglement entropies of one- and two-dimensional critical wave functions

被引:140
|
作者
Stephan, Jean-Marie [1 ]
Furukawa, Shunsuke [2 ]
Misguich, Gregoire [1 ]
Pasquier, Vincent [1 ]
机构
[1] CEA, CNRS, URA 2306, Inst Phys Theor,IPhT, F-91191 Gif Sur Yvette, France
[2] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan
关键词
boson systems; critical points; entropy; ground states; Ising model; Luttinger liquid; quantum entanglement; wave functions; STATISTICAL THEORY; ENERGY LEVELS; GROUND-STATE; QUANTUM; LATTICE; SPIN; TRANSITIONS; MODELS; CHAIN; PHASE;
D O I
10.1103/PhysRevB.80.184421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Shannon entropy of the probability distribution resulting from the ground-state wave function of a one-dimensional quantum model. This entropy is related to the entanglement entropy of a Rokhsar-Kivelson-type wave function built from the corresponding two-dimensional classical model. In both critical and massive cases, we observe that it is composed of an extensive part proportional to the length of the system and a subleading universal constant S-0. In c=1 critical systems (Tomonaga-Luttinger liquids), we find that S-0 is a simple function of the boson compactification radius. This finding is based on a field-theoretical analysis of the Dyson-Gaudin gas related to dimer and Calogero-Sutherland models. We also performed numerical demonstrations in the dimer models and the spin-1/2 XXZ chain. In a massive (crystal) phase, S-0 is related to the ground-state degeneracy. We also examine this entropy in the Ising chain in a transverse field as an example showing a c=1/2 critical point.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Entanglement islands in generalized two-dimensional dilaton black holes
    Yu, Ming-Hui
    Ge, Xian-Hui
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [42] On the critical behaviour of two-dimensional liquid crystals
    Farinas-Sanchez, A. I.
    Botet, R.
    Berche, B.
    Paredes, R.
    CONDENSED MATTER PHYSICS, 2010, 13 (01)
  • [43] Critical behavior of the two-dimensional icosahedron model
    Ueda, Hiroshi
    Okunishi, Kouichi
    Kremar, Roman
    Gendiar, Andrej
    Yunoki, Seiji
    Nishino, Tomotoshi
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [44] Universality for two-dimensional critical cellular automata
    Bollobas, Bela
    Duminil-Copin, Hugo
    Morris, Robert
    Smith, Paul
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (02) : 620 - 703
  • [45] On critical point for two-dimensional holomorphic systems
    Valenzuela-Henriquez, Francisco
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 2276 - 2312
  • [46] Existence of a line of critical points in a two-dimensional Lebwohl Lasher model
    Shabnam, Sabana
    DasGupta, Sudeshna
    Roy, Soumen Kumar
    PHYSICS LETTERS A, 2016, 380 (5-6) : 667 - 671
  • [47] Transfer matrix computation of critical polynomials for two-dimensional Potts models
    Jacobsen, Jesper Lykke
    Scullard, Christian R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (07)
  • [48] Analytical and computational study of Fisher and Shannon information entropies in one and three-dimensional spaces for exponential-type potential
    Okon, Ituen B.
    Onate, Clement A.
    William, Eddy S.
    Chen, W. L.
    Isonguyo, Cecilia N.
    Akpan, Dianabasi N.
    Purohit, Kaushal R.
    Antia, Akaninyene D.
    Araujo, Judith P.
    Ukpong, Aniekan M.
    Okorie, Uduakobong S.
    Inyang, Etido P.
    Eyube, Edwin S.
    Emeje, Kizito O.
    Akpabio, Louis E.
    Ituen, Eno E.
    Aly, Abeer E.
    Essien, KufreAbasi E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (03):
  • [49] Modulating thermal robustness and entanglement distribution in a two-dimensional dissipative spin system using impurities
    Sadiek, Gehad
    AlQasimi, Maryam
    RESULTS IN PHYSICS, 2022, 35
  • [50] Different quantum entropies for two kinds of extreme two-dimensional Lowe-Strominger black holes
    Wang, B
    Su, RK
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (02) : 177 - 180