Shannon and entanglement entropies of one- and two-dimensional critical wave functions

被引:140
|
作者
Stephan, Jean-Marie [1 ]
Furukawa, Shunsuke [2 ]
Misguich, Gregoire [1 ]
Pasquier, Vincent [1 ]
机构
[1] CEA, CNRS, URA 2306, Inst Phys Theor,IPhT, F-91191 Gif Sur Yvette, France
[2] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan
关键词
boson systems; critical points; entropy; ground states; Ising model; Luttinger liquid; quantum entanglement; wave functions; STATISTICAL THEORY; ENERGY LEVELS; GROUND-STATE; QUANTUM; LATTICE; SPIN; TRANSITIONS; MODELS; CHAIN; PHASE;
D O I
10.1103/PhysRevB.80.184421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Shannon entropy of the probability distribution resulting from the ground-state wave function of a one-dimensional quantum model. This entropy is related to the entanglement entropy of a Rokhsar-Kivelson-type wave function built from the corresponding two-dimensional classical model. In both critical and massive cases, we observe that it is composed of an extensive part proportional to the length of the system and a subleading universal constant S-0. In c=1 critical systems (Tomonaga-Luttinger liquids), we find that S-0 is a simple function of the boson compactification radius. This finding is based on a field-theoretical analysis of the Dyson-Gaudin gas related to dimer and Calogero-Sutherland models. We also performed numerical demonstrations in the dimer models and the spin-1/2 XXZ chain. In a massive (crystal) phase, S-0 is related to the ground-state degeneracy. We also examine this entropy in the Ising chain in a transverse field as an example showing a c=1/2 critical point.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Generalized entanglement entropies in two-dimensional conformal field theory
    Murciano, Sara
    Calabrese, Pasquale
    Konik, Robert M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [2] Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments
    Choi, Ji Yeh
    Hwang, Heungsun
    Timmerman, Marieke E.
    PSYCHOMETRIKA, 2018, 83 (01) : 1 - 20
  • [3] NUMERICAL STUDIES OF ENTANGLEMENT PROPERTIES IN ONE- AND TWO-DIMENSIONAL QUANTUM ISING AND XXZ MODELS
    Braiorr-Orrs, B.
    Weyrauch, M.
    Rakov, M. V.
    UKRAINIAN JOURNAL OF PHYSICS, 2016, 61 (07): : 613 - 626
  • [4] One- and two-dimensional assembly of colloidal ellipsoids in ac electric fields
    Singh, John P.
    Lele, Pushkar P.
    Nettesheim, Florian
    Wagner, Norman J.
    Furst, Eric M.
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [5] The Multiradical Character of One- and Two-Dimensional Graphene Nanoribbons
    Plasser, Felix
    Pasalic, Hasan
    Gerzabek, Martin H.
    Libisch, Florian
    Reiter, Rafael
    Burgdoerfer, Joachim
    Mueller, Thomas
    Shepard, Ron
    Lischka, Hans
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) : 2581 - 2584
  • [6] Universal entanglement entropy in two-dimensional conformal quantum critical points
    Hsu, Benjamin
    Mulligan, Michael
    Fradkin, Eduardo
    Kim, Eun-Ah
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [7] Measuring von Neumann entanglement entropies without wave functions
    Mendes-Santos, T.
    Giudici, G.
    Fazio, R.
    Dalmonte, M.
    NEW JOURNAL OF PHYSICS, 2020, 22 (01):
  • [8] One- and two-dimensional nonlinear THz spectroscopy on semiconductor nanostructures
    Woerner, Michael
    Kuehn, Wilhelm
    Reimann, Klaus
    Elsaesser, Thomas
    Hey, Rudolf
    ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XV, 2011, 7937
  • [9] Infinite-randomness critical point in the two-dimensional disordered contact process
    Vojta, Thomas
    Farquhar, Adam
    Mast, Jason
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [10] Critical behavior and entanglement of the random transverse-field Ising model between one and two dimensions
    Kovacs, Istvan A.
    Igloi, Ferenc
    PHYSICAL REVIEW B, 2009, 80 (21)