A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree

被引:8
作者
Li, Xianyue [1 ]
Zou, Feng [2 ]
Huang, Yaochun [2 ]
Kim, Donghyun [2 ]
Wu, Weili [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
关键词
Selected-internal Steiner tree; Approximation algorithm; ALGORITHMS;
D O I
10.1007/s00453-009-9301-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The selected-internal Steiner minimum tree problem is a generalization of original Steiner minimum tree problem. Given a weighted complete graph G=(V,E) with weight function c, and two subsets R (') aSS RaS dagger V with |R-R (')|a parts per thousand yen2, selected-internal Steiner minimum tree problem is to find a minimum subtree T of G interconnecting R such that any leaf of T does not belong to R ('). In this paper, suppose c is metric, we obtain a (1+rho)-approximation algorithm for this problem, where rho is the best-known approximation ratio for the Steiner minimum tree problem.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 19 条
[11]   Approximating the selected-internal Steiner tree [J].
Hsieh, Sun-Yuan ;
Yang, Shih-Cheng .
THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) :288-291
[12]   On the partial terminal Steiner tree problem [J].
Hsieh, Sun-Yuan ;
Gao, Huang-Ming .
JOURNAL OF SUPERCOMPUTING, 2007, 41 (01) :41-52
[13]  
HWANG F. K., 1992, The Steiner tree problem, V53
[14]  
Kahng A.B., 1995, OPTIMAL INTERCONNECT
[15]  
Korte Bernhard, 1990, Paths, flows, and VLSI-layout
[16]   On the terminal Steiner tree problem [J].
Lin, GH ;
Xue, GL .
INFORMATION PROCESSING LETTERS, 2002, 84 (02) :103-107
[17]   The full Steiner tree problem [J].
Lu, CL ;
Tang, CY ;
Lee, RCT .
THEORETICAL COMPUTER SCIENCE, 2003, 306 (1-3) :55-67
[18]   Algorithms for terminal Steiner trees [J].
Martinez, Fabio Viduani ;
de Pina, Jose Coelho ;
Soares, Jose .
THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) :133-142
[19]  
Robins G, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P770