A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree

被引:8
作者
Li, Xianyue [1 ]
Zou, Feng [2 ]
Huang, Yaochun [2 ]
Kim, Donghyun [2 ]
Wu, Weili [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
关键词
Selected-internal Steiner tree; Approximation algorithm; ALGORITHMS;
D O I
10.1007/s00453-009-9301-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The selected-internal Steiner minimum tree problem is a generalization of original Steiner minimum tree problem. Given a weighted complete graph G=(V,E) with weight function c, and two subsets R (') aSS RaS dagger V with |R-R (')|a parts per thousand yen2, selected-internal Steiner minimum tree problem is to find a minimum subtree T of G interconnecting R such that any leaf of T does not belong to R ('). In this paper, suppose c is metric, we obtain a (1+rho)-approximation algorithm for this problem, where rho is the best-known approximation ratio for the Steiner minimum tree problem.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 19 条
[1]   The k-Steiner ratio in graphs [J].
Borchers, A ;
Du, DZ .
SIAM JOURNAL ON COMPUTING, 1997, 26 (03) :857-869
[2]  
Cheng X., 2001, Steiner trees in Industry
[3]   On approximation algorithms for the terminal Steiner tree problem [J].
Drake, DE ;
Hougardy, S .
INFORMATION PROCESSING LETTERS, 2004, 89 (01) :15-18
[4]  
Du D.Z., 2000, ADV STEINER TREE
[5]   ON COMPONENT-SIZE BOUNDED STEINER TREES [J].
DU, DZ .
DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) :131-140
[6]  
Foulds L.R., 1982, Advances in Applied Mathematics, V3, P43, DOI [10.1016/S0196-8858(82)80004-3, DOI 10.1016/S0196-8858(82)80004-3]
[7]   A note on the terminal Steiner tree problem [J].
Fuchs, B .
INFORMATION PROCESSING LETTERS, 2003, 87 (04) :219-220
[8]  
GAREY M, 1997, SIAM J APPL MATH, V32, P835
[9]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[10]  
Graur D, 2000, Fundamentals in molecular evolution, V2nd