Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics

被引:32
作者
Du, Lei [1 ]
Liu, Kefei [2 ]
Yao, Xiaohui [2 ]
Risacher, Shannon L. [3 ]
Han, Junwei [1 ]
Saykin, Andrew J. [3 ]
Guo, Lei [1 ]
Shen, Li [2 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[3] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Indianapolis, IN 46202 USA
基金
加拿大健康研究院; 中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
Brain imaging genetics; sparse canonical correlation analysis; multi-task sparse canonical correlation analysis;
D O I
10.1109/TCBB.2019.2947428
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Brain imaging genetics studies the genetic basis of brain structures and functionalities via integrating genotypic data such as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise univariate analysis. MTL methods generally incorporate a few of QTs and could not select features from multiple QTs; while SCCA methods typically employ one modality of QTs to study its association with SNPs. Both MTL and SCCA are computational expensive as the number of SNPs increases. In this paper, we propose a novel multi-task SCCA (MTSCCA) method to identify bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by different imaging modalities. MTSCCA enforces sparsity at the group level via the G(2,1) -norm, and jointly selects features across multiple tasks for SNPs and QTs via the l(2,1) -norm. A fast optimization algorithm is proposed using the grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains better correlation coefficients and canonical weights patterns. In addition, MTSCCA runs very fast and easy-to-implement, indicating its potential power in genome-wide brain-wide imaging genetics.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 39 条
[1]  
Ando RK, 2005, J MACH LEARN RES, V6, P1817
[2]  
[Anonymous], 2007, NIPS
[3]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[4]   Task clustering and gating for Bayesian multitask learning [J].
Bakker, B ;
Heskes, T .
JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (01) :83-99
[5]   Exploiting task relatedness for multiple task learning [J].
Ben-David, S ;
Schuller, R .
LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 :567-580
[6]   Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis [J].
Chen, Jun ;
Bushman, Frederic D. ;
Lewis, James D. ;
Wu, Gary D. ;
Li, Hongzhe .
BIOSTATISTICS, 2013, 14 (02) :244-258
[7]   An Efficient Optimization Algorithm for Structured Sparse CCA, with Applications to eQTL Mapping [J].
Chen X. ;
Liu H. .
Statistics in Biosciences, 2012, 4 (1) :3-26
[8]   Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949) [J].
Davies, G. ;
Armstrong, N. ;
Bis, J. C. ;
Bressler, J. ;
Chouraki, V. ;
Giddaluru, S. ;
Hofer, E. ;
Ibrahim-Verbaas, C. A. ;
Kirin, M. ;
Lahti, J. ;
van der Lee, S. J. ;
Le Hellard, S. ;
Liu, T. ;
Marioni, R. E. ;
Oldmeadow, C. ;
Postmus, I. ;
Smith, A. V. ;
Smith, J. A. ;
Thalamuthu, A. ;
Thomson, R. ;
Vitart, V. ;
Wang, J. ;
Yu, L. ;
Zgaga, L. ;
Zhao, W. ;
Boxall, R. ;
Harris, S. E. ;
Hill, W. D. ;
Liewald, D. C. ;
Luciano, M. ;
Adams, H. ;
Ames, D. ;
Amin, N. ;
Amouyel, P. ;
Assareh, A. A. ;
Au, R. ;
Becker, J. T. ;
Beiser, A. ;
Berr, C. ;
Bertram, L. ;
Boerwinkle, E. ;
Buckley, B. M. ;
Campbell, H. ;
Corley, J. ;
De Jager, P. L. ;
Dufouil, C. ;
Eriksson, J. G. ;
Espeseth, T. ;
Faul, J. D. ;
Ford, I. .
MOLECULAR PSYCHIATRY, 2015, 20 (02) :183-192
[9]   Posterior Cingulum White Matter Disruption and its Associations with Verbal Memory and Stroke Risk in Mild Cognitive Impairment [J].
Delano-Wood, Lisa ;
Stricker, Nikki H. ;
Sorg, Scott F. ;
Nation, Daniel A. ;
Jak, Amy J. ;
Woods, Steven P. ;
Libon, David J. ;
Delisa, Dean C. ;
Frank, Lawrence R. ;
Bondi, Mark W. .
JOURNAL OF ALZHEIMERS DISEASE, 2012, 29 (03) :589-603
[10]   Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort [J].
Du, Lei ;
Liu, Kefei ;
Zhu, Lei ;
Yao, Xiaohui ;
Risacher, Shannon L. ;
Guo, Lei ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2019, 35 (14) :I474-I483