Hydrophobicity of transmembrane proteins: Spatially profiling the distribution

被引:15
作者
Silverman, BD [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
transmembrane proteins; alpha-helical bundles; hydrophobicity; spatial profiling; zero-order moment;
D O I
10.1110/ps.0214903
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A hallmark of soluble globular protein tertiary structure is a hydrophobic core and a protein exterior populated predominantly by hydrophilic residues. Recent hydrophobic moment profiling of the spatial distribution of 30 globular proteins of diverse size and structure had revealed features of this distribution that were comparable. Analogous profiling of the hydrophobicity distribution of the alpha-helical buried bundles of several transmembrane proteins, as the lipid/protein interface is approached from within the bilayer, reveals spatial hydrophobicity profiles that contrast with those obtained for the soluble proteins. The calculations, which enable relative changes of hydrophobicity to be simply identified over the entire spatial extent of the multimer within the lipid bilayer, show the accumulated zero-order moments of the bundles to be mainly inverted with respect to that found for the soluble proteins. This indicates a statistical increase in the average residue hydrophobic content as the lipid bilayer is approached. This result differs from that of a relatively recent calculation and qualitatively agrees with earlier calculations involving lipid exposed and buried residues of the alpha-helices of transmembrane proteins. Spatial profiling, over the entire spatial extent of the multimer with scaled values of residue hydrophobicity, provides information that is not available from calculations using lipid exposure alone.
引用
收藏
页码:586 / 599
页数:14
相关论文
共 42 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]  
Bonneau R, 2001, PROTEINS, V43, P1, DOI 10.1002/1097-0134(20010401)43:1<1::AID-PROT1012>3.0.CO
[3]  
2-A
[4]   Structure of the MscL homolog from Mycobacterium tuberculosis:: A gated mechanosensitive ion channel [J].
Chang, G ;
Spencer, RH ;
Lee, AT ;
Barclay, MT ;
Rees, DC .
SCIENCE, 1998, 282 (5397) :2220-2226
[5]  
Eisenberg D., 1982, FARADAY S CHEM SOC, V17, P109, DOI DOI 10.1039/FS9821700109
[6]   IDENTIFYING NONPOLAR TRANSBILAYER HELICES IN AMINO-ACID-SEQUENCES OF MEMBRANE-PROTEINS [J].
ENGELMAN, DM ;
STEITZ, TA ;
GOLDMAN, A .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1986, 15 :321-353
[7]   BACTERIORHODOPSIN IS AN INSIDE-OUT PROTEIN [J].
ENGELMAN, DM ;
ZACCAI, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (10) :5894-5898
[8]   STRUCTURE OF THE PHOTOSYNTHETIC REACTION-CENTER FROM RHODOBACTER-SPHAEROIDES AT 2.65-ANGSTROM RESOLUTION - COFACTORS AND PROTEIN-COFACTOR INTERACTIONS [J].
ERMLER, U ;
FRITZSCH, G ;
BUCHANAN, SK ;
MICHEL, H .
STRUCTURE, 1994, 2 (10) :925-936
[9]   EVALUATION OF PROTEIN MODELS BY ATOMIC SOLVATION PREFERENCE [J].
HOLM, L ;
SANDER, C .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (01) :93-105
[10]   RECOGNIZING NATIVE FOLDS BY THE ARRANGEMENT OF HYDROPHOBIC AND POLAR RESIDUES [J].
HUANG, ES ;
SUBBIAH, S ;
LEVITT, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 252 (05) :709-720