Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges

被引:81
作者
Zhao, Siwen [1 ,2 ,3 ]
Li, Xiaoxi [4 ,5 ]
Dong, Baojuan [6 ,7 ]
Wang, Huide [1 ]
Wang, Hanwen [4 ,5 ]
Zhang, Yupeng [1 ,2 ]
Han, Zheng [6 ,7 ]
Zhang, Han [1 ,2 ]
机构
[1] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Inst Microscale Optoelect, Shenzhen 518060, Guangdong, Peoples R China
[3] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
[5] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
[6] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[7] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国博士后科学基金;
关键词
valleytronics; transition metal dichalcogenides (TMDs); optoelectronic devices; hybrid heterostructures; DER-WAALS HETEROSTRUCTURES; SPIN INJECTION; EXCITON DYNAMICS; ELECTRICAL DETECTION; INTERLAYER EXCITONS; CIRCULAR-DICHROISM; CHIRAL MOLECULES; DARK EXCITONS; POLARIZATION; MOS2;
D O I
10.1088/1361-6633/abdb98
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, the emerging conceptual valley-related devices have attracted much attention due to the progress on generating, controlling, and detecting the valley degree of freedom in the transition metal dichalcogenide (TMD) monolayers. In general, it is known that achieving valley degree of freedom with long valley lifetime is crucial in the implementation of valleytronic devices. Here, we provide a brief introduction of the basic understandings of valley degree of freedom. We as well review the recent experimental advancement in the modulation of valley degree of freedom. The strategies include optical/magnetic/electric field tuning, moire patterns, plasmonic metasurface, defects and strain engineering. In addition, we summarize the corresponding mechanisms, which can help to obtain large degree of polarization and long valley lifetimes in monolayer TMDs. Based on these methods, two-dimensional valley-optoelectronic systems based on TMD heterostructures can be constructed, providing opportunities for such as the new paradigm in data processing and transmission. Challenges and perspectives on the development of valleytronics are highlighted as well.
引用
收藏
页数:20
相关论文
共 199 条
[1]   Magnetic control of valley pseudospin in monolayer WSe2 [J].
Aivazian, G. ;
Gong, Zhirui ;
Jones, Aaron M. ;
Chu, Rui-Lin ;
Yan, J. ;
Mandrus, D. G. ;
Zhang, Chuanwei ;
Cobden, David ;
Yao, Wang ;
Xu, X. .
NATURE PHYSICS, 2015, 11 (02) :148-152
[2]   Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures [J].
Alexeev, Evgeny M. ;
Ruiz-Tijerina, David A. ;
Danovich, Mark ;
Hamer, Matthew J. ;
Terry, Daniel J. ;
Nayak, Pramoda K. ;
Ahn, Seongjoon ;
Pak, Sangyeon ;
Lee, Juwon ;
Sohn, Jung Inn ;
Molas, Maciej R. ;
Koperski, Maciej ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Novoselov, Kostya S. ;
Gorbachev, Roman V. ;
Shin, Hyeon Suk ;
Fal'ko, Vladimir I. ;
Tartakovskii, Alexander I. .
NATURE, 2019, 567 (7746) :81-+
[3]   Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures [J].
Benitez, L. Antonio ;
Savero Torres, Williams ;
Sierra, Juan F. ;
Timmermans, Matias ;
Garcia, Jose H. ;
Roche, Stephan ;
Costache, Marius V. ;
Valenzuela, Sergio O. .
NATURE MATERIALS, 2020, 19 (02) :170-+
[4]   Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates [J].
Bonilla, Manuel ;
Kolekar, Sadhu ;
Ma, Yujing ;
Diaz, Horacio Coy ;
Kalappattil, Vijaysankar ;
Das, Raja ;
Eggers, Tatiana ;
Gutierrez, Humberto R. ;
Manh-Huong Phan ;
Batzill, Matthias .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :289-+
[5]   Magnetism in two-dimensional van der Waals materials [J].
Burch, Kenneth S. ;
Mandrus, David ;
Park, Je-Geun .
NATURE, 2018, 563 (7729) :47-52
[6]   Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides [J].
Cai, Tianyi ;
Yang, Shengyuan A. ;
Li, Xiao ;
Zhang, Fan ;
Shi, Junren ;
Yao, Wang ;
Niu, Qian .
PHYSICAL REVIEW B, 2013, 88 (11)
[7]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[8]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[9]   Asymmetric Aluminum Antennas for Self-Calibrating Surface Enhanced Infrared Absorption Spectroscopy [J].
Cerjan, Benjamin ;
Yang, Xiao ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS PHOTONICS, 2016, 3 (03) :354-360
[10]   Generation, transport and detection of valley-locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures [J].
Cha, Soonyoung ;
Noh, Minji ;
Kim, Jehyun ;
Son, Jangyup ;
Bae, Hyemin ;
Lee, Doeon ;
Kim, Hoil ;
Lee, Jekwan ;
Shin, Ho-Seung ;
Sim, Sangwan ;
Yang, Seunghoon ;
Lee, Sooun ;
Shim, Wooyoung ;
Lee, Chul-Ho ;
Jo, Moon-Ho ;
Kim, Jun Sung ;
Kim, Dohun ;
Choi, Hyunyong .
NATURE NANOTECHNOLOGY, 2018, 13 (10) :910-+