New fractional inequalities of midpoint type via s-convexity and their application

被引:13
|
作者
Almutairi, Ohud [1 ]
Kilicman, Adem [2 ,3 ]
机构
[1] Univ Hafr Al Batin, Dept Math, Hafar al Batin, Saudi Arabia
[2] Univ Putra Malaysia, Dept Math, Serdang, Malaysia
[3] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
关键词
Convex functions; Hermite-Hadamard inequality; Holder's inequality; Special means; Midpoint formula; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13660-019-2215-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduced new integral inequalities of Hermite-Hadamard type via s-convexity and studied their properties. The absolute form of the first and second derivatives for the new inequalities is considered to be s-convex. As an application, the inequalities were applied to the special means of real numbers. We give the error estimates for the midpoint formula.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
    Sitho, Surang
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    MATHEMATICS, 2021, 9 (14)
  • [22] Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals
    Budak, Huseyin
    Pehlivan, Ebru
    AIMS MATHEMATICS, 2020, 5 (03): : 1960 - 1984
  • [23] Fractional midpoint-type inequalities for twice-differentiable functions
    Hezenci, Fatih
    Bohner, Martin
    Budaka, Huseyin
    FILOMAT, 2023, 37 (24) : 8131 - 8144
  • [24] Some integral inequalities via new generalized harmonically convexity
    Baidar, Abdul Wakil
    Sanli, Zeynep
    Kunt, Mehmet
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17226 - 17241
  • [25] Ostrowski type inequalities via new fractional conformable integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Gozpinar, Abdurrahman
    Jarad, Fahd
    AIMS MATHEMATICS, 2019, 4 (06): : 1684 - 1697
  • [26] Generalized fractional midpoint type inequalities for co-ordinated convex functions
    Hezenci, Fatih
    Budak, Huseyin
    Kara, Hasan
    Sarikaya, Mehmet Zeki
    FILOMAT, 2023, 37 (13) : 4103 - 4124
  • [27] New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated h(SIC)-Convexity via Left and Right Order Relation
    Saeed, Tareq
    Nwaeze, Eze R.
    Khan, Muhammad Bilal
    Hakami, Khalil Hadi
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [28] SOME NEW GENERALIZATIONS OF HADAMARD-TYPE MIDPOINT INEQUALITIES INVOLVING FRACTIONAL INTEGRALS
    Bayraktar, B.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 66 - 82
  • [29] On generalization of midpoint type inequalities with generalized fractional integral operators
    Budak, Hueseyin
    Usta, Fuat
    Sarikaya, Mehmet Zeki
    Ozdemir, M. Emin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 769 - 790
  • [30] On some new inequalities of Hermite-Hadamard-Mercer midpoint and trapezoidal type in q-calculus
    Ali, Muhammad Aamir
    Goodrich, Christopher S.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 35 - 46