A global optimization approach for solving non-monotone variational inequality problems

被引:2
|
作者
Majig, M. [1 ]
Barsbold, B. [2 ]
Enkhbat, R. [2 ]
Fukushima, M. [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
[2] Natl Univ Mongolia, Dept Appl Math, Sch Math & Comp Sci, Ulaanbaatar, Mongolia
关键词
variational inequality; global optimization; branch and bound method; Lipschitz continuity; ALGORITHMS;
D O I
10.1080/02331930902945009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this article is to reformulate the non-monotone variational inequality problem as a global optimization problem and present a branch and bound method for solving it. Under a mild condition, it is shown that the equivalent optimization problem enjoys a Lipschitz property. The proposed approach is illustrated with computational experiments.
引用
收藏
页码:871 / 881
页数:11
相关论文
共 50 条
  • [41] The method for solving variational inequality problems with numerical results
    Sarawut Suwannaut
    Suthep Suantai
    Atid Kangtunyakarn
    Afrika Matematika, 2019, 30 : 311 - 334
  • [42] A Global Error bound for the Feasible Solution of Variational Inequality Problems
    Zhao, Wenling
    Huang, Jin
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (03): : 469 - 473
  • [43] A mixed variational inequality method for solving Signorini problems
    Cheng, Yongfeng
    Nie, Zhibao
    Ding, Shijun
    Liu, Kaiyuan
    Ding, Mintao
    Fan, Zibo
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 147 : 59 - 68
  • [44] The method for solving variational inequality problems with numerical results
    Suwannaut, Sarawut
    Suantai, Suthep
    Kangtunyakarn, Atid
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 311 - 334
  • [45] A non-monotone pattern search approach for systems of nonlinear equations
    Amini, Keyvan
    Kimiaei, Morteza
    Khotanlou, Hassan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (01) : 33 - 50
  • [46] On the proximal mapping for multi-valued monotone variational inequality problems
    Le Dung Muu
    Xuan Thanh Le
    Nguyen Ngoc Hai
    Optimization Letters, 2023, 17 : 369 - 383
  • [47] Global optimization and applications to a variational inequality problem
    Hussain, Azhar
    Adeel, Muhammad
    Aydi, Hassen
    Baleanu, Dumitru
    OPEN MATHEMATICS, 2021, 19 (01): : 1349 - 1358
  • [48] On the proximal mapping for multi-valued monotone variational inequality problems
    Muu, Le Dung
    Le, Xuan Thanh
    Hai, Nguyen Ngoc
    OPTIMIZATION LETTERS, 2023, 17 (02) : 369 - 383
  • [49] A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces
    Jolaoso, Lateef Olakunle
    DEMONSTRATIO MATHEMATICA, 2021, 54 (01) : 527 - 547
  • [50] A Branch-and-Bound Based Method for Solving Monotone Optimization Problems
    X. L. Sun
    J. L. Li
    Journal of Global Optimization, 2006, 35