Silica-modified SnO2-graphene "slime" for self-enhanced li-ion battery anode

被引:59
作者
He, Haiyong [2 ]
Fu, Wei [1 ]
Wang, Hongtao [3 ,4 ]
Wang, Hong [1 ]
Jin, Chuanhong [3 ,4 ]
Fan, Hong Jin [2 ]
Liu, Zheng [1 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Nanoelect Ctr Excellence, NOVITAS, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Interfacial engineering; Tin oxide SnO2; Graphene in battery; Cycle stability enhancement; Lithium ion battery; LITHIUM STORAGE; NEGATIVE ELECTRODES; MESOPOROUS SNO2; COMPOSITE; NANOPARTICLES; PERFORMANCE; NANOTUBES; CAPACITY; SURFACE; MICROSPHERES;
D O I
10.1016/j.nanoen.2017.03.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin oxide is an attractive anode material for lithium battery, on the grounds of its high capacity (above 2000 mAh/g), environmental friendliness and low cost. However, the large volumetric expansion (> 200%) and aggregation of lithium-tin alloy cause significant capacity fading after only a few hundred cycles. In this work, we design a new type of SnO2 based composite electrode to address the above two issues. SnO2 nanoparticles uniform anchored on graphene are covered by a thin layer of silica. Upon cycling, tin can diffuse into the coating layer and also spread laterally on the graphene surface to form a continuous thin film of Li2SnxSiO3+y. Such design diminishes the volumetric expansion of individual Sn particles and aggregation of lithium-tin alloy, but also dramatically decreases the lithium transport distance and diffusion barrier. Additionally, we propose that diffusion-induced defects on surface offer capacitive-like regions to absorb extra lithium ions. As a result, this unique structure can maintain a high capacity of 1950 mAh/g after 1000 cycles at a specific current of 500 mA/g with negligible capacity loss, and excellent reversibility with a columbic efficiency retention over 99%.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 53 条
[1]   One-step flame synthesis of SnO2/TiO2 composite nanoparticles for photocatalytic applications [J].
Akurati, KK ;
Vital, A ;
Hany, R ;
Bommer, B ;
Graule, T ;
Winterer, M .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2005, 7 (04) :153-161
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Stannasiloxanes: from rings to polymers [J].
Beckmann, J ;
Jurkschat, K .
COORDINATION CHEMISTRY REVIEWS, 2001, 215 :267-300
[4]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[5]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[6]   Building a Better Battery [J].
Chiang, Yet-Ming .
SCIENCE, 2010, 330 (6010) :1485-1486
[7]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[8]   Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J].
Demir-Cakan, Rezan ;
Hu, Yong-Sheng ;
Antonietti, Markus ;
Maier, Joachim ;
Titirici, Maria-Magdalena .
CHEMISTRY OF MATERIALS, 2008, 20 (04) :1227-1229
[9]   Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J].
Deng, Da ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1841-1846
[10]  
Di Lupo F, 2011, INT J ELECTROCHEM SC, V6, P3580