LSCD: Low-rank and sparse cross-domain recommendation

被引:31
|
作者
Huang, Ling [1 ,2 ]
Zhao, Zhi-Lin [1 ]
Wang, Chang-Dong [1 ,2 ]
Huang, Dong [3 ]
Chao, Hong-Yang [1 ]
机构
[1] Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou, Guangdong, Peoples R China
[3] South China Agr Univ, Coll Math & Informat, Guangzhou, Guangdong, Peoples R China
关键词
Recommendation; Cross-domain; Low-rank; Sparse; MODEL;
D O I
10.1016/j.neucom.2019.07.091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the ability of addressing the data sparsity and cold-start problems, Cross-Domain Collaborative Filtering (CDCF) has received a significant amount of attention. Despite significant success, most of the existing CDCF algorithms assume that all the domains are correlated, which is however not always guaranteed in practice. In this paper, we propose a novel CDCF algorithm termed Low-rank and Sparse Cross-Domain (LSCD) recommendation algorithm. Different from most of the CDCF algorithms, LSCD extracts a user and an item latent feature matrix for each domain respectively, rather than tri-factorizing the rating matrix of each domain into three low dimensional matrices. In order to simultaneously improve the performance of recommendations among correlated domains by transferring knowledge and among uncorrelated domains by differentiating features in different domains, the features of users are separated into shared and domain-specific parts adaptively. Specifically, a low-rank matrix is used to capture the shared features of each user across different domains and a sparse matrix is used to characterize the discriminative features in each specific domain. Extensive experiments on two real-world datasets have been conducted to confirm that the proposed algorithm transfers knowledge in a better way to improve the quality of recommendation and outperforms state-of-the-art recommendation algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [21] Sparse and Low-Rank Decomposition of Covariance Matrix for Efficient DOA Estimation
    Chen, Yong
    Wang, Fang
    Wan, Jianwei
    Xu, Ke
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 957 - 961
  • [22] Sparse and Low-Rank Constrained Tensor Factorization for Hyperspectral Image Unmixing
    Zheng, Pan
    Su, Hongjun
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 1754 - 1767
  • [23] SPARSE AND LOW-RANK MATRIX DECOMPOSITION VIA ALTERNATING DIRECTION METHOD
    Yuan, Xiaoming
    Yang, Junfeng
    PACIFIC JOURNAL OF OPTIMIZATION, 2013, 9 (01): : 167 - 180
  • [24] Weighted Non-negative Sparse Low-rank Representation Classification
    Li, Jingshan
    Chen, Caikou
    Hou, Xielian
    Dai, Tianchen
    Wang, Rong
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 2153 - 2157
  • [25] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [26] Robust Sparse Low-rank Hypergraph Learning under Complex Noise
    Cui, Tianhao
    Chen, Lei
    Xu, Jie
    Xu, Lei
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4088 - 4094
  • [27] Single Image Highlight Removal with a Sparse and Low-Rank Reflection Model
    Guo, Jie
    Zhou, Zuojian
    Wang, Limin
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 282 - 298
  • [28] Sparse and low-rank recovery using adaptive thresholding
    Zarmehi, Nematollah
    Marvasti, Farokh
    DIGITAL SIGNAL PROCESSING, 2018, 73 : 145 - 152
  • [29] Cross-domain Recommendation with Bridge-Item Embeddings
    Gao, Chen
    Li, Yong
    Feng, Fuli
    Chen, Xiangning
    Zhao, Kai
    He, Xiangnan
    Jin, Depeng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (01)
  • [30] SPIKE SORTING BASED ON LOW-RANK AND SPARSE REPRESENTATION
    Huang, Libo
    Ling, Bingo Wing-Kuen
    Zeng, Yan
    Gan, Lu
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,