The Stability Problem for a Dynamic System with the Assimilation of Observational Data

被引:5
作者
Belyaev, K. P. [1 ]
Kuleshov, A. A. [2 ]
Tuchkova, N. P. [3 ]
机构
[1] Russian Acad Sci, Shirshov Inst Oceanol, Moscow 117218, Russia
[2] Russian Acad Sci, FRC Keldysh Inst Appl Math, Moscow 125047, Russia
[3] Russian Acad Sci, Dorodnicyn Comp Ctr FRC Comp Sci & Control, Moscow 119333, Russia
关键词
dynamical system; stability theory; stability conditions; data assimilation problem; generalized Kalman filter; MODEL;
D O I
10.1134/S1995080219070072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of stability of a dynamic system defined by a system of differential equations to the perturbation of the initial data and with the data assimilation is considered. The assimilation of observational data is realized by the previously published author's method. The stability condition for this data assimilation method is formulated in the classical sense of Lyapunov, and the solution of the system is corrected using observational data for a given time interval. Necessary and sufficient conditions are proposed under which this system is stable as a function of the observed values. A possible numerical experiment to test and to apply this theory is discussed.
引用
收藏
页码:911 / 917
页数:7
相关论文
共 12 条
  • [1] [Anonymous], 1994, Theory of Sensitivity in Dynamic Systems
  • [2] A correction method for dynamic model calculations using observational data and its application in oceanography
    Belyaev K.P.
    Kuleshov A.A.
    Tuchkova N.P.
    Tanajura C.A.S.
    [J]. Mathematical Models and Computer Simulations, 2016, 8 (4) : 391 - 400
  • [3] Comparison of methods for argo drifters data assimilation into a hydrodynamical model of the ocean
    Belyaev, K. P.
    Tanajura, C. A. S.
    Tuchkova, N. P.
    [J]. OCEANOLOGY, 2012, 52 (05) : 593 - 603
  • [4] An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics
    Belyaev, Konstantin
    Kuleshov, Andrey
    Tuchkova, Natalia
    Tanajura, Clemente A. S.
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2018, 24 (01) : 12 - 25
  • [5] A sensitivity study of the Navier-Stokes-α model
    Breckling, Sean
    Neda, Monika
    Pahlevani, Fran
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 666 - 689
  • [6] US GODAE Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)
    Chassignet, Eric P.
    Hurlburt, Harley E.
    Metzger, E. Joseph
    Smedstad, Ole Martin
    Cummings, James A.
    Halliwell, George R.
    Bleck, Rainer
    Baraille, Remy
    Wallcraft, Alan J.
    Lozano, Carlos
    Tolman, Hendrik L.
    Srinivasan, Ashwanth
    Hankin, Steve
    Cornillon, Peter
    Weisberg, Robert
    Barth, Alexander
    He, Ruoying
    Werner, Francisco
    Wilkin, John
    [J]. OCEANOGRAPHY, 2009, 22 (02) : 64 - 75
  • [7] DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY
    GHIL, M
    MALANOTTERIZZOLI, P
    [J]. ADVANCES IN GEOPHYSICS, 1991, 33 : 141 - 266
  • [8] Gikhman I. I., 1996, Introduction to the Theory of Random Processes
  • [9] An Investigation of Ocean Model Uncertainties Through Ensemble Forecast Experiments in the Southwest Atlantic Ocean
    Lima, L. N.
    Pezzi, L. P.
    Penny, S. G.
    Tanajura, C. A. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (01) : 432 - 452
  • [10] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO