BERRY-ESSEEN BOUNDS FOR PROJECTIONS OF COORDINATE SYMMETRIC RANDOM VECTORS

被引:4
作者
Goldstein, Larry [1 ]
Shao, Qi-Man [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2009年 / 14卷
关键词
Normal approximation; convex bodies; CENTRAL LIMIT PROBLEM;
D O I
10.1214/ECP.v14-1502
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a coordinate symmetric random vector (Y-1, ... , Y-n) = Y is an element of R-n, that is, one satisfying (Y-1, ... ,Y-n) =(d) (e(1)Y(1), ... , e(n)Y(n)) for all (e(1), ... , e(n)) is an element of {-1,1}(n), for which P(Y-i = 0) = 0 for all i = 1,2, ... , n, the following Berry Esseen bound to the cumulative standard normal Phi for the standardized projection W-theta = Y-theta/nu(theta) of Y holds: sup(x is an element of R) vertical bar P(W-theta <= x) - Phi(x) vertical bar <= 2 Sigma(n)(i=1)vertical bar theta(i)vertical bar E-3 vertical bar X-i vertical bar(3) + 8.4E(V-theta(2) - 1)(2), where Y-theta = theta . Y is the projection of Y in direction theta is an element of R-n with parallel to theta parallel to = 1, nu(theta) = root Var(Y-theta), X-i = vertical bar Y-i vertical bar/nu(theta) and V-theta = Sigma(n)(i=1) theta X-2(i)i(2). As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure l(p)(n) on the l(p)(n) sphere as a special case, resulting in a bound of order Sigma(n)(i=1) vertical bar theta(i)vertical bar(3).
引用
收藏
页码:474 / 485
页数:12
相关论文
共 32 条
  • [1] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [2] Berry-Esseen bounds for typical weighted sums
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [3] Berry-Esseen bounds for self-normalized sums of locally dependent random variables
    Zhang, Zhuo-Song
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (11) : 2629 - 2652
  • [4] Nonuniform Berry-Esseen bounds for studentized U-statistics
    Leung, Dennis
    Shao, Qi-Man
    BERNOULLI, 2024, 30 (04) : 3276 - 3302
  • [5] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) : 1992 - 2031
  • [6] Berry-Esseen Bounds for Random Index Non Linear Statistics via Stein's Method
    Tuntapthai, Mongkhon
    Chaidee, Nattakarn
    Neammanee, Kritsana
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (16) : 3464 - 3485
  • [7] Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences
    Krokowski, Kai
    Reichenbachs, Anselm
    Thale, Christoph
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 763 - 803
  • [8] BERRY-ESSEEN BOUNDS FOR FINITE-POPULATION T-STATISTICS
    RAO, CR
    ZHAO, LC
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (05) : 409 - 416
  • [9] The Berry-Esseen bound for identically distributed random variables by Stein method
    Cai Guang-hui
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (04) : 455 - 461
  • [10] New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods
    Dobler, Christian
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (02): : 863 - 902