Graph attention temporal convolutional network for traffic speed forecasting on road networks
被引:49
|
作者:
Zhang, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Zhang, Ke
[1
]
He, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
Tsinghua Univ, Tsinghua Daimler Joint Res Ctr Sustainable Transp, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
He, Fang
[2
,3
]
Zhang, Zhengchao
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Zhang, Zhengchao
[1
]
Lin, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Tsinghua Univ, Tsinghua Daimler Joint Res Ctr Sustainable Transp, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Lin, Xi
[1
,3
]
Li, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Tsinghua Univ, Tsinghua Daimler Joint Res Ctr Sustainable Transp, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
Li, Meng
[1
,3
]
机构:
[1] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
[3] Tsinghua Univ, Tsinghua Daimler Joint Res Ctr Sustainable Transp, Beijing 100084, Peoples R China
Traffic speed forecasting plays an increasingly essential role in successful intelligent transportation systems. However, this still remains a challenging task when the accuracy requirement is demanding. To improve the prediction accuracy and achieve a timely performance, the capture of the intrinsically spatio-temporal dependencies and the creation of a parallel model architecture are required. Accordingly, we propose a novel end-to-end deep learning framework named Graph Attention Temporal Convolutional Network (GATCN). The proposed model employs the graph attention network to mine the complex spatial correlations within the traffic network and temporal convolution operation to capture temporal dependencies. In addition, the multi-head self-attention mechanism is incorporated into the model to extract the spatio-temporal coupling effects. Experiments show that the proposed model consistently outperforms other state-of-the-art baselines for various prediction intervals on two real-world datasets. Moreover, we reveal that the proposed model can effectively distinguish the sophisticated traffic patterns of ramps on expressways by analyzing the graph attention heatmap.
机构:
Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Bai, Jiandong
Zhu, Jiawei
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Zhu, Jiawei
Song, Yujiao
论文数: 0引用数: 0
h-index: 0
机构:
Huawei Technol Co Ltd, Shenzhen 518129, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Song, Yujiao
Zhao, Ling
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Zhao, Ling
Hou, Zhixiang
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Hou, Zhixiang
Du, Ronghua
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
Du, Ronghua
Li, Haifeng
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R ChinaBeijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Huang, Ling
Liu, Xing-Xing
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Liu, Xing-Xing
Huang, Shu-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Coll Sci & Engn, Guangzhou, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Huang, Shu-Qiang
Wang, Chang-Dong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
Guangdong Prov Key Lab Computat Sci, Guangzhou, Peoples R China
Minist Educ, Key Lab Machine Intelligence & Adv Comp, Beijing, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Wang, Chang-Dong
Tu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Sch Architecture & Urban Planning, Shenzhen, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Tu, Wei
Xie, Jia-Meng
论文数: 0引用数: 0
h-index: 0
机构:
Traff Adm Bur Guangdong Prov, Guangzhou, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Xie, Jia-Meng
Tang, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Fenghuotiandi Commun Technol Co Ltd, Nanjing, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
Tang, Shuai
Xie, Wendi
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Canwin Comp Technol Co Ltd, Guangzhou, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China