ICESat-2 Elevation Retrievals in Support of Satellite-Derived Bathymetry for Global Science Applications

被引:72
|
作者
Babbel, Benjamin J. [1 ]
Parrish, Christopher E. [1 ]
Magruder, Lori A. [2 ,3 ]
机构
[1] Oregon State Univ, Dept Civil & Construct Engn, Corvallis, OR 97331 USA
[2] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
[3] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
关键词
bathymetry; ICESat‐ 2; Landsat; 8; Sentinel‐ ENVIRONMENTS; VALIDATION; SENTINEL-2; TURBIDITY;
D O I
10.1029/2020GL090629
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Bathymetry retrievals from 2D, multispectral imagery, referred to as Satellite-Derived Bathymetry (SDB), afford the potential to obtain global, nearshore bathymetric data in optically clear waters. However, accurate SDB depth retrievals are limited in the absence of "seed depths." The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) space-based altimeter has proven capable of accurate bathymetry, but methods of employing ICESat-2 bathymetry for SDB retrievals over broad spatial extents are immature. This research aims to establish and test a baseline methodology for generating bathymetric surface models using SDB with ICESat-2. The workflow is operationally efficient (17-37 min processing time) and capable of producing bathymetry of sufficient vertical accuracy for many coastal science applications, with RMSEs of 0.96 and 1.54 m when using Sentinel-2 and Landsat 8, respectively. The highest priorities for further automation have also been identified, supporting the long-range goal of global coral reef habitat change analysis using ICESat-2-aided SDB.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SCBMLD: a photon signal extraction method for ICESat-2 satellite-derived bathymetry
    Li, Ningning
    Wang, Mi
    Y ang, Bo
    Pan, Jun
    Pi, Yingdong
    Fan, Zhongli
    OPTICS EXPRESS, 2025, 33 (04): : 9023 - 9040
  • [2] Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets
    Ma, Yue
    Xu, Nan
    Liu, Zhen
    Yang, Bisheng
    Yang, Fanlin
    Wang, Xiao Hua
    Li, Song
    REMOTE SENSING OF ENVIRONMENT, 2020, 250
  • [3] AI Expands Reach of SDB Machine Learning, ICESat-2 Enhance Satellite-Derived Bathymetry
    Goodrich, Kyle
    Smith, Ross
    SEA TECHNOLOGY, 2021, 62 (06) : 8 - 12
  • [4] Satellite-derived bathymetry combined with Sentinel-2 and ICESat-2 datasets using machine learning
    Xie, Congshuang
    Chen, Peng
    Zhang, Zhenhua
    Pan, Delu
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [5] ICESat-2 Space-Based Laser Validation for Satellite-Derived Bathymetry in NSF-Funded Research
    Goodrich, Kyle
    Smith, Ross
    SEA TECHNOLOGY, 2020, 61 (06) : 15 - 20
  • [6] ICESat-2 Bathymetry: Advances in Methods and Science
    Parrish, Christopher E.
    Magruder, Lori
    Herzfeld, Ute
    Thomas, Nathan
    Markel, Jonathan
    Jasinski, Michael
    Imahori, Gretchen
    Herrmann, Joan
    Trantow, Thomas
    Borsa, Adrian
    Stumpf, Rick
    Eder, Bryan
    Caballero, Isabel
    2022 OCEANS HAMPTON ROADS, 2022,
  • [7] Satellite-derived sediment distribution mapping using ICESat-2 and SuperDove
    Zhang, Xiaohan
    Wang, Lizhe
    Li, Jun
    Han, Wei
    Fan, Runyu
    Wang, Sheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 545 - 564
  • [8] Very High-Resolution Satellite-Derived Bathymetry and Habitat Mapping Using Pleiades-1 and ICESat-2
    Le Quilleuc, Alyson
    Collin, Antoine
    Jasinski, Michael F.
    Devillers, Rodolphe
    REMOTE SENSING, 2022, 14 (01)
  • [9] Satellite-Derived Bathymetry with Sediment Classification Using ICESat-2 and Multispectral Imagery: Case Studies in the South China Sea and Australia
    Li, Shaoyu
    Wang, Xiao Hua
    Ma, Yue
    Yang, Fanlin
    REMOTE SENSING, 2023, 15 (04)
  • [10] Space-Borne Cloud-Native Satellite-Derived Bathymetry (SDB) Models Using ICESat-2 And Sentinel-2
    Thomas, N.
    Pertiwi, A. P.
    Traganos, D.
    Lagomasino, D.
    Poursanidis, D.
    Moreno, S.
    Fatoyinbo, L.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (06)