Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010-2017 in South Africa

被引:7
作者
Arowosegbe, Oluwaseyi Olalekan [1 ,2 ]
Roeoesli, Martin [1 ,2 ]
Kunzli, Nino [1 ,2 ]
Saucy, Apolline [1 ,2 ]
Adebayo-Ojo, Temitope Christina [1 ,2 ]
Jeebhay, Mohamed F. [3 ]
Dalvie, Mohammed Aqiel [3 ]
de Hoogh, Kees [1 ,2 ]
机构
[1] Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, Socinstr 57, CH-4002 Basel, Switzerland
[2] Univ Basel, Fac Sci, CH-4003 Basel, Switzerland
[3] Univ Cape Town, Sch Publ Hlth & Family Med, Ctr Environm & Occupat Hlth Res, ZA-7700 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
air pollution; Random Forest; imputation; particulate matter; environmental exposure; South Africa; AIR-POLLUTION;
D O I
10.3390/ijerph18073374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Good quality and completeness of ambient air quality monitoring data is central in supporting actions towards mitigating the impact of ambient air pollution. In South Africa, however, availability of continuous ground-level air pollution monitoring data is scarce and incomplete. To address this issue, we developed and compared different modeling approaches to impute missing daily average particulate matter (PM10) data between 2010 and 2017 using spatiotemporal predictor variables. The random forest (RF) machine learning method was used to explore the relationship between average daily PM10 concentrations and spatiotemporal predictors like meteorological, land use and source-related variables. National (8 models), provincial (32) and site-specific (44) RF models were developed to impute missing daily PM10 data. The annual national, provincial and site-specific RF cross-validation (CV) models explained on average 78%, 70% and 55% of ground-level PM10 concentrations, respectively. The spatial components of the national and provincial CV RF models explained on average 22% and 48%, while the temporal components of the national, provincial and site-specific CV RF models explained on average 78%, 68% and 57% of ground-level PM10 concentrations, respectively. This study demonstrates a feasible approach based on RF to impute missing measurement data in areas where data collection is sparse and incomplete.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Urban air pollution in Sub-Saharan Africa: Time for action [J].
Amegah, A. Kofi ;
Agyei-Mensah, Samuel .
ENVIRONMENTAL POLLUTION, 2017, 220 :738-743
[2]  
[Anonymous], 2010, THESIS U KWAZULU NAT
[3]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[4]   Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland [J].
de Hoogh, Kees ;
Heritier, Harris ;
Stafoggia, Massimo ;
Kunzli, Nino ;
Kloog, Itai .
ENVIRONMENTAL POLLUTION, 2018, 233 :1147-1154
[5]  
Department of Environmental Affairs, 2016, 2 S AFR ENV OUTL
[6]   Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project [J].
Eeftens, Marloes ;
Beelen, Rob ;
de Hoogh, Kees ;
Bellander, Tom ;
Cesaroni, Giulia ;
Cirach, Marta ;
Declercq, Christophe ;
Dedele, Audrius ;
Dons, Evi ;
de Nazelle, Audrey ;
Dimakopoulou, Konstantina ;
Eriksen, Kirsten ;
Falq, Gregoire ;
Fischer, Paul ;
Galassi, Claudia ;
Grazuleviciene, Regina ;
Heinrich, Joachim ;
Hoffmann, Barbara ;
Jerrett, Michael ;
Keidel, Dirk ;
Korek, Michal ;
Lanki, Timo ;
Lindley, Sarah ;
Madsen, Christian ;
Moelter, Anna ;
Nador, Gizella ;
Nieuwenhuijsen, Mark ;
Nonnemacher, Michael ;
Pedeli, Xanthi ;
Raaschou-Nielsen, Ole ;
Patelarou, Evridiki ;
Quass, Ulrich ;
Ranzi, Andrea ;
Schindler, Christian ;
Stempfelet, Morgane ;
Stephanou, Euripides ;
Sugiri, Dorothea ;
Tsai, Ming-Yi ;
Yli-Tuomi, Tarja ;
Varro, Mihaly J. ;
Vienneau, Danielle ;
von Klot, Stephanie ;
Wolf, Kathrin ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) :11195-11205
[7]   Environmental pollution in Africa [J].
Fayiga, Abioye O. ;
Ipinmoroti, Mabel O. ;
Chirenje, Tait .
ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2018, 20 (01) :41-73
[8]  
Feig G, 2019, Clean Air J, V29, DOI [10.17159/caj/2019/29/2.746451, DOI 10.17159/CAJ/2019/29/2.746451]
[9]  
Feig G.T., 2016, Clean Air Journal, V26, P21, DOI DOI 10.17159/2410-972X/2016/V26N1A9
[10]   Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance [J].
Freeman, Elizabeth A. ;
Moisen, Gretchen G. ;
Coulston, John W. ;
Wilson, Barry T. .
CANADIAN JOURNAL OF FOREST RESEARCH, 2016, 46 (03) :323-339