Epigenetic Regulation of TLR4 Gene Expression in Intestinal Epithelial Cells for the Maintenance of Intestinal Homeostasis

被引:144
作者
Takahashi, Kyoko [1 ]
Sugi, Yutaka [1 ]
Hosono, Akira [1 ]
Kaminogawa, Shuichi [1 ]
机构
[1] Nihon Univ, Coll Bioresource Sci, Food & Physiol Funct Lab, Fujisawa, Kanagawa 2528510, Japan
基金
日本学术振兴会;
关键词
REPRESSOR DOMAIN; GUT MICROBIOTA; ORAL TOLERANCE; MICROFLORA; MD-2; LIPOPOLYSACCHARIDE; COREPRESSOR; INDUCTION; MECHANISM; INFANTS;
D O I
10.4049/jimmunol.0901271
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. In this study, we show that the low responsiveness of human IEC lines to LIPS was mainly brought about by a down-regulation of TLR4 gene transcription. Additionally, the presence of an IEC-specific repressor element in the 5' region of the TLR4 gene and binding of a NF to the element was shown. The transcription factor ZNF160, which was expressed more abundantly in a LPS-low responder IEC line than in a LPS-high responder IEC line, repressed TLR4 gene transcription. ZNF160 is known to interact with the scaffold protein KAP1 via its N terminus to recruit histone deacetylase. Histone deacetylation, as well as DNA methylation, at the 5' region of the TLR4 gene was significantly higher in LPS-low responder IEC lines than in a monocyte line or a LPS-high responder IEC line. It was demonstrated that TLR4 gene transcription was repressed by these epigenetic regulations, which were, at least in part, dependent on ZNF160. Down-regulaton of TLR4 gene expression by these mechanisms in IECs possibly contributes to the maintainance of homeostasis in the intestinal commensal system. The Journal of Immunology, 2009, 183: 6522-6529.
引用
收藏
页码:6522 / 6529
页数:8
相关论文
共 35 条
[1]   TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells [J].
Abreu, MT ;
Arnold, ET ;
Thomas, LS ;
Gonsky, R ;
Zhou, YH ;
Hu, B ;
Arditi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (23) :20431-20437
[2]   Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide [J].
Abreu, MT ;
Vora, P ;
Faure, E ;
Thomas, LS ;
Arnold, ET ;
Arditi, M .
JOURNAL OF IMMUNOLOGY, 2001, 167 (03) :1609-1616
[3]   Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation [J].
Ayyanathan, K ;
Lechner, MS ;
Bell, P ;
Maul, GG ;
Schultz, DC ;
Yamada, Y ;
Tanaka, K ;
Torigoe, K ;
Rauscher, FJ .
GENES & DEVELOPMENT, 2003, 17 (15) :1855-1869
[4]   Allergy development and the intestinal microflora during the first year of life [J].
Björkstén, B ;
Sepp, E ;
Julge, K ;
Voor, T ;
Mikelsaar, M .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2001, 108 (04) :516-520
[5]   Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease [J].
Cario, E ;
Podolsky, DK .
INFECTION AND IMMUNITY, 2000, 68 (12) :7010-7017
[6]   Trypsin-sensitive modulation of intestinal epithelial MD-2 as mechanism of lipopolysaccharide tolerance [J].
Cario, Elke ;
Golenbock, Douglas T. ;
Visintin, Alberto ;
Ruenzi, Michael ;
Gerken, Guido ;
Podolsky, Daniel K. .
JOURNAL OF IMMUNOLOGY, 2006, 176 (07) :4258-4266
[7]  
Cebra J J, 1998, Dev Immunol, V6, P13, DOI 10.1155/1998/68382
[8]   A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism [J].
Coombes, Janine L. ;
Siddiqui, Karima R. R. ;
Arancibia-Carcamo, Carolina V. ;
Hall, Jason ;
Sun, Cheng-Ming ;
Belkaid, Yasmine ;
Powrie, Fiona .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (08) :1757-1764
[9]   KAP-1, a novel corepressor for the highly conserved KRAB repression domain [J].
Friedman, JR ;
Fredericks, WJ ;
Jensen, DE ;
Speicher, DW ;
Huang, XP ;
Neilson, EG ;
Rauscher, FJ .
GENES & DEVELOPMENT, 1996, 10 (16) :2067-2078
[10]   Gut flora allows recovery of oral tolerance to ovalbumin in mice after transient breakdown mediated by cholera toxin or Escherichia coli heat-labile enterotoxin [J].
GaboriauRouthiau, V ;
Moreau, MC .
PEDIATRIC RESEARCH, 1996, 39 (04) :625-629