Eye State Recognizer Using Light-Weight Architecture for Drowsiness Warning

被引:2
作者
Duy-Linh Nguyen [1 ]
Putro, Muhamad Dwisnanto [1 ]
Kang-Hyun Jo [1 ]
机构
[1] Univ Ulsan, Sch Elect Engn, Ulsan, South Korea
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021 | 2021年 / 12672卷
基金
新加坡国家研究基金会;
关键词
Convolutional neural network (CNN); Deep learning; Drowsiness warning; Eye detection; Eye classification; Eye state recognizer; ROBUST;
D O I
10.1007/978-3-030-73280-6_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The eye are a very important organ in the human body. The eye area and eyes contain lots of useful information about human interaction with the environment. Many studies have relied on eye region analyzes to build the medical care, surveillance, interaction, security, and warning systems. This paper focuses on extracting eye region features to detect eye state using the light-weight convolutional neural networks with two stages: eye detection and classification. This method can apply on simple drowsiness warning system and perform well on Intel Core I7-4770 CPU @ 3.40 GHz (Personal Computer - PC) and on quad-core ARM Cortex-A57 CPU (Jetson Nano device) with 19.04 FPS and 17.20 FPS (frames per second), respectively.
引用
收藏
页码:518 / 530
页数:13
相关论文
共 29 条
[1]  
Almeida D., 2016, arXiv, DOI DOI 10.48550/ARXIV.1603.05201
[2]  
[Anonymous], 2013, 2013 ANN INT C EMERG, DOI DOI 10.1109/AICERAICMICR.2013.6575966
[3]  
bioid.com, BIOID FACE DATABASE
[4]   Eye Movement Analysis for Activity Recognition Using Electrooculography [J].
Bulling, Andreas ;
Ward, Jamie A. ;
Gellersen, Hans ;
Troester, Gerhard .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) :741-753
[5]   An unsupervised eye blink artifact detection method for real-time electroencephalogram processing [J].
Chang, Won-Du ;
Lim, Jeong-Hwan ;
Im, Chang-Hwan .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (03) :401-417
[6]   Robust tracking and remapping of eye appearance with passive computer vision [J].
Colombo, Carlo ;
Comanducci, Dario ;
Del Bimbo, Alberto .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2007, 3 (04)
[7]  
Nguyen DL, 2020, IEEE IND ELEC, P477, DOI [10.1109/IECON43393.2020.9254858, 10.1109/iecon43393.2020.9254858]
[8]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, 10.48550/ARXIV.1512.03385]
[9]   AN IMPROVED AND PORTABLE EYE-BLINK DURATION DETECTION SYSTEM TO WARN OF DRIVER FATIGUE [J].
Hsieh, Chin-Shun ;
Tai, Cheng-Chi .
INSTRUMENTATION SCIENCE & TECHNOLOGY, 2013, 41 (05) :429-444
[10]   Vision-based method for detecting driver drowsiness and distraction in driver monitoring system [J].
Jo, Jaeik ;
Lee, Sung Joo ;
Jung, Ho Gi ;
Park, Kang Ryoung ;
Kim, Jaihie .
OPTICAL ENGINEERING, 2011, 50 (12)