On a definition of the integral of a random function

被引:0
|
作者
Radchenko, VN [1 ]
机构
[1] KIEV TG SHEVCHENKO STATE UNIV,UA-252017 KIEV,UKRAINE
关键词
random function; the Lebesgue theorem; random set functions;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The integral of a measurable random function xi(x) with respect to a nonnegative measure m is considered. It is shown that such an integral may be introduced as a limit in the probability of integrals of simple random functions. An analogue of the Lebesgue theorem for convergence in probability integral xi(n)(x) dm, n --> infinity is proved. A criterion that this random measure may be represented in the form of such an integral is obtained.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 50 条
  • [21] Random Continuous Functions
    Brodhead, Paul
    Cenzer, Douglas
    Remmel, Jeffrey B.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 167 : 275 - 287
  • [22] Improving quality of error-diffusion using random-function based combination of algorithm - art. no. 67892L
    Zhu, Wenhua
    Wang, Xiaohua
    Xiu, Xiaojie
    MIPPR 2007: MEDICAL IMAGING, PARALLEL PROCESSING OF IMAGES, AND OPTIMIZATION TECHNIQUES, 2007, 6789 : L7892 - L7892
  • [23] Inverting random functions
    Michael A. Steel
    László A. Székely
    Annals of Combinatorics, 1999, 3 (1) : 103 - 113
  • [24] Stochastic integral over the Arratia flow
    A. A. Dorogovtsev
    Doklady Mathematics, 2006, 74 : 648 - 649
  • [25] On Finite-Dimensional Distributions of a Random Element Conditioned by the Sum of Random Elements*
    Kudlaev E.M.
    Journal of Mathematical Sciences, 2013, 191 (4) : 588 - 589
  • [26] Stochastic integral over the Arratia flow
    Dorogovtsev, A. A.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 648 - 649
  • [27] WEIGHTED APPROXIMATION OF RANDOM FUNCTIONS
    YU JIARONG
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 1995, (04) : 361 - 366
  • [28] Indifferentiability of Truncated Random Permutations
    Choi, Wonseok
    Lee, Byeonghak
    Lee, Jooyoung
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 175 - 195
  • [29] Selfsimilar fractals and selfsimilar random fractals
    Hutchinson, JE
    Rüschendorf, L
    FRACTAL GEOMETRY AND STOCHASTICS II, 2000, 46 : 109 - 123
  • [30] Statistical Convergence in Probability for a Sequence of Random Functions
    Celaleddin Şençimen
    Journal of Theoretical Probability, 2013, 26 : 94 - 106