AUTOMATIC SEGMENTATION OF HEAD STRUCTURES ON FETAL MRI

被引:35
作者
Anquez, Jeremie [1 ]
Angelini, Elsa D. [1 ]
Bloch, Isabelle [1 ]
机构
[1] CNRS, Inst TELECOM Telecom ParisTech, UMR LTCI 5141, Paris, France
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2 | 2009年
关键词
Fetal imaging; MRI; eyes; skull; segmentation; GRAPH CUTS;
D O I
10.1109/ISBI.2009.5192995
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent improvements of fetal MRI acquisitions now allow three-dimensional segmentation of fetal structures, to extract biometrical measures for pregnancy follow-up. Automation of the segmentation process remains a difficult challenge, given the complexity of the fetal organs and their spatial organization. As a starting point, we propose in this paper a fully automated segmentation method to localize the eyes and segment the skull bone content (SBC). Priors, embedding contrast, morphological and biometrical information, are used to assist the segmentation process. A validation of the proposed segmentation method, on 24 MRI volumes of fetuses between 30 and 35 gestational weeks, demonstrated a high accuracy for eyes and SBC extraction.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 50 条
[41]   Fetal brain volumetry through MRI volumetric reconstruction and segmentation [J].
Gholipour, Ali ;
Estroff, Judy A. ;
Barnewolt, Carol E. ;
Connolly, Susan A. ;
Warfield, Simon K. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2011, 6 (03) :329-339
[42]   Enhancement and Lightweight Fusion U-Net for Segmentation of Cardiac Structures in MRI [J].
Salim, Ula T. ;
Dawwd, Shefa A. ;
Ali, Fakhrulddin H. .
PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, :88-93
[43]   Knowledge-based segmentation and labeling of brain structures from MRI images [J].
Xue, JH ;
Ruan, S ;
Moretti, B ;
Revenu, M ;
Bloyet, D .
PATTERN RECOGNITION LETTERS, 2001, 22 (3-4) :395-405
[44]   Automatic segmentation using atlases in head and neck cancers: Methodology [J].
Ramus, L. ;
Thariat, J. ;
Marcy, P. -Y. ;
Pointreau, Y. ;
Bera, G. ;
Commowick, O. ;
Malandain, G. .
CANCER RADIOTHERAPIE, 2010, 14 (03) :206-212
[45]   Automatic Segmentation Technique for Detection of Brain Tumor in MRI Images [J].
Sawant, Vishal L. ;
Kerkar, Palhavi .
2017 INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC), 2017, :298-301
[46]   A Survey of Automatic MRI based Brain Tumor Segmentation Techniques [J].
Subashree, M. ;
Sangeetha, J. .
PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, :157-161
[47]   Automatic segmentation of the uterus on MRI using a convolutional neural network [J].
Kurata, Yasuhisa ;
Nishio, Mizuho ;
Kido, Aki ;
Fujimoto, Koji ;
Yakami, Masahiro ;
Isoda, Hiroyoshi ;
Togashi, Kaori .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 114
[48]   A Novel Algorithm for Automatic Brain Structure Segmentation from MRI [J].
He, Qing ;
Karsch, Kevin ;
Duan, Ye .
ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 :552-561
[49]   A NEW STRATEGY FOR AUTOMATIC BREAST CANCER SEGMENTATION IN MRI IMAGES [J].
Ammar, Mohammed ;
Mahmoudi, Said .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2022, 22 (06)
[50]   Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review [J].
Khan, Zia ;
Yahya, Norashikin ;
Alsaih, Khaled ;
Al-Hiyali, Mohammed Isam ;
Meriaudeau, Fabrice .
IEEE ACCESS, 2021, 9 :97878-97905