A VARIATIONAL APPROACH TO OPTIMAL STOPPING PROBLEMS FOR DIFFUSION PROCESSES

被引:4
作者
Arkin, V. I. [1 ]
Slastnikov, A. D. [1 ]
机构
[1] RAS, CEMI, Moscow 117418, Russia
基金
俄罗斯基础研究基金会;
关键词
diffusion process; optimal stopping; variational approach; smooth pasting; two-dimensional geometric Brownian motion; Stefan problem;
D O I
10.1137/S0040585X97983766
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a variational approach to the solution to optimal stopping problems for diffusion processes as an alternative to the traditional approach based on the solution of the Stefan (free-boundary) problem. The connection of this variational approach to smooth pasting conditions is established. We present an example where the solution to the Stefan problem is not the solution to an optimal stopping problem. On the basis of the proposed approach, we obtain the solution to an optimal stopping problem for a two-dimensional geometric Brownian motion with a homogeneous payoff function.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 15 条
[1]   On the smooth-fit principle in Rn [J].
Aliev, A. F. .
RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) :781-783
[2]   Reward functionals, salvage values, and optimal stopping [J].
Alvarez, LHR .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 54 (02) :315-337
[3]  
[Anonymous], 1998, Stochastic differential equations
[4]  
ARKIN V, 1999, 9903 EERC
[5]   Optimal time to invest under tax exemptions [J].
Arkin, VI ;
Slastnikov, AD .
FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, :17-+
[6]  
ARKIN VI, 2004, OBOZR PRIKL PROM MAT, V11, P3
[7]  
ARKIN VI, 2004, DYNAMIC STOCHASTIC O, P83
[8]   INVESTMENT UNDER UNCERTAINTY - DIXIT,AK, PINDYCK,RS [J].
SCHWARTZ, ES .
JOURNAL OF FINANCE, 1994, 49 (05) :1924-1928
[9]  
Gerber H.U., 1996, Mathematical Finance, V6, P303, DOI 10.1111/j.1467-9965.1996.tb00118.x
[10]   Optimal time to invest when the price processes are geometric Brownian motions [J].
Yaozhong Hu ;
Bernt Øksendal .
Finance and Stochastics, 1998, 2 (3) :295-310