Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits

被引:248
作者
Zhang, Mei [1 ]
Leng, Ping [1 ]
Zhang, Guanglian [2 ]
Li, Xiangxin [2 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, Beijing 100094, Peoples R China
[2] Beijing Municipal Sci & Technol Commiss, Beijing 100035, Peoples R China
基金
北京市自然科学基金;
关键词
ABA; Ethylene; Grape; NCED gene; Peach; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; ETHYLENE BIOSYNTHESIS; MOLECULAR-BIOLOGY; BERRY DEVELOPMENT; MATURATION; ABA; ANTHOCYANIN; EXPRESSION; STRESS; TOMATO;
D O I
10.1016/j.jplph.2009.01.013
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the rote of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741 bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at tow levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The rotes of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits. Crown Copyright (C) 2009 Published by Elsevier GmbH. All rights reserved.
引用
收藏
页码:1241 / 1252
页数:12
相关论文
共 41 条
[1]   Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening [J].
Alexander, L ;
Grierson, D .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (377) :2039-2055
[2]  
Blankenship S. M., 1993, Postharvest Biology and Technology, V3, P95, DOI 10.1016/0925-5214(93)90001-J
[3]   1-methylcyclopropene: a review [J].
Blankenship, SM ;
Dole, JM .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2003, 28 (01) :1-25
[4]   Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado [J].
Chernys, JT ;
Zeevaart, JAD .
PLANT PHYSIOLOGY, 2000, 124 (01) :343-353
[5]   Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit [J].
Chervin, C ;
El-Kereamy, A ;
Roustan, JP ;
Latché, A ;
Lamon, J ;
Bouzayen, M .
PLANT SCIENCE, 2004, 167 (06) :1301-1305
[6]  
COOMBE B G, 1989, Acta Horticulturae (Wageningen), P149
[7]  
COOMBE BG, 1992, AM J ENOL VITICULT, V43, P101
[8]   INVOLVEMENT OF A LIPOXYGENASE-LIKE ENZYME IN ABSCISIC-ACID BIOSYNTHESIS [J].
CREELMAN, RA ;
BELL, E ;
MULLET, JE .
PLANT PHYSIOLOGY, 1992, 99 (03) :1258-1260
[9]   Formation and breakdown of ABA [J].
Cutler, AJ ;
Krochko, JE .
TRENDS IN PLANT SCIENCE, 1999, 4 (12) :472-478
[10]   Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes [J].
Davies, C ;
Boss, PK ;
Robinson, SP .
PLANT PHYSIOLOGY, 1997, 115 (03) :1155-1161