Numerical MHD codes for modeling astrophysical flows

被引:9
|
作者
Koldoba, A. V. [1 ,2 ]
Ustyugova, G. V. [3 ]
Lii, P. S. [4 ]
Comins, M. L. [4 ]
Dyda, S. [5 ]
Romanova, M. M. [4 ]
Lovelace, R. V. E. [4 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyy 141700, Moscow Region, Russia
[2] Inst Comp Aided Design RAS, 2nd Brestskaya St,19-18, Moscow 123056, Russia
[3] Keldysh Inst Appl Math RAS, Miusskaya Sq 4, Moscow 125047, Russia
[4] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[5] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[6] Cornell Univ, Dept Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Numerical methods; Codes; Magnetohydrodynamics; APPROXIMATE RIEMANN SOLVER; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; ALGORITHMS; SCHEMES; SYSTEMS; ZEUS-2D; ATHENA;
D O I
10.1016/j.newast.2015.10.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [31] A parallel adaptive 3D MHD scheme for modeling coronal and solar wind plasma flows
    Groth, CPT
    De Zeeuw, DL
    Gombosi, TI
    Powell, KG
    SPACE SCIENCE REVIEWS, 1999, 87 (1-2) : 193 - 198
  • [32] A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows
    C. P. T. Groth
    D. L. De Zeeuw
    T. I. Gombosi
    K. G. Powell
    Space Science Reviews, 1999, 87 : 193 - 198
  • [33] Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error
    H. C. Yee
    Björn Sjögreen
    Journal of Scientific Computing, 2006, 29 : 115 - 164
  • [34] BOUNDARY OPTIMAL-CONTROL OF MHD FLOWS
    HOU, LS
    MEIR, AJ
    APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 32 (02): : 143 - 162
  • [35] MHD remote numerical simulations: evolution of coronal mass ejections
    Hernandez-Cervantes, Liliana
    Santillan, A.
    Gonzalez-Ponce, A. R.
    COSMIC MAGNETIC FIELDS: FROM PLANETS, TO STARS AND GALAXIES, 2009, (259): : 241 - +
  • [36] ON THE ORIGIN OF DIVERGENCE ERRORS IN MHD SIMULATIONS AND CONSEQUENCES FOR NUMERICAL SCHEMES
    Kemm, Friedemann
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2013, 8 (01) : 1 - 38
  • [37] Using artificial neural network for computing the development length of MHD channel flows
    Taheri, Mohammad Hasan
    Abbasi, Morteza
    Jamei, Mehran Khaki
    MECHANICS RESEARCH COMMUNICATIONS, 2019, 99 : 8 - 14
  • [38] Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas
    Palenzuela, Carlos
    Lehner, Luis
    Reula, Oscar
    Rezzolla, Luciano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 394 (04) : 1727 - 1740
  • [39] Low-dimensional modeling and numerical simulation of transition in simple shear flows
    Rempfer, D
    ANNUAL REVIEW OF FLUID MECHANICS, 2003, 35 : 229 - 265
  • [40] Efficient low dissipative high order schemes for multiscale MHD flows, II:: Minimization of del•B numerical error
    Yee, H. C.
    Sjogreen, Bjorn
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 29 (01) : 115 - 164