Numerical MHD codes for modeling astrophysical flows

被引:9
|
作者
Koldoba, A. V. [1 ,2 ]
Ustyugova, G. V. [3 ]
Lii, P. S. [4 ]
Comins, M. L. [4 ]
Dyda, S. [5 ]
Romanova, M. M. [4 ]
Lovelace, R. V. E. [4 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyy 141700, Moscow Region, Russia
[2] Inst Comp Aided Design RAS, 2nd Brestskaya St,19-18, Moscow 123056, Russia
[3] Keldysh Inst Appl Math RAS, Miusskaya Sq 4, Moscow 125047, Russia
[4] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[5] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[6] Cornell Univ, Dept Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Numerical methods; Codes; Magnetohydrodynamics; APPROXIMATE RIEMANN SOLVER; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; ALGORITHMS; SCHEMES; SYSTEMS; ZEUS-2D; ATHENA;
D O I
10.1016/j.newast.2015.10.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [21] Micromagnetorotation of MHD Micropolar Flows
    Aslani, Kyriaki-Evangelia
    Benos, Lefteris
    Tzirtzilakis, Efstratios
    Sarris, Ioannis E.
    SYMMETRY-BASEL, 2020, 12 (01):
  • [22] Progress on the modeling of liquid metal, free surface, MHD flows for fusion liquid walls
    Morley, NB
    Smolentsev, S
    Munipalli, R
    Ni, MJ
    Gao, D
    Abdou, M
    FUSION ENGINEERING AND DESIGN, 2004, 72 (1-3) : 3 - 34
  • [23] Numerical simulations of astrophysical plasmas
    Pomarede, D.
    Thooris, B.
    Audit, E.
    Teyssier, R.
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION, AND OPTIMIZATION: SCIENCE AND TECHNOLOGY FOR DEVELOPMENT IN THE 21ST CENTURY, 2006, : 222 - +
  • [24] Smoothed MHD equations for numerical simulations of ideal quasi-neutral gas dynamic flows
    Popov, Mikhail V.
    Elizarova, Tatiana G.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 196 : 348 - 361
  • [25] EXACT-SOLUTIONS FOR HELICAL MHD EQUILIBRIA OF ASTROPHYSICAL JETS
    VILLATA, M
    FERRARI, A
    ASTRONOMY & ASTROPHYSICS, 1994, 284 (02) : 663 - 678
  • [26] Classical MHD shocks: theory and numerical simulation
    Pogorelov, NV
    PHYSICS OF COLLISIONLESS SHOCKS, 2005, 781 : 42 - 49
  • [27] The ECHO code for astrophysical plasmas: Special and General Relativistic MHD
    Del Zanna, L.
    Landi, S.
    Zanotti, O.
    Bucciantini, N.
    Londrillo, P.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 109 - 113
  • [28] Laboratory astrophysics and non-ideal equations of state: the next challenges for astrophysical MHD simulations
    Carver, Robert L.
    Cunningham, Andrew J.
    Frank, Adam
    Hartigan, Patrick
    Coker, Robert
    Wilde, B. H.
    Foster, John
    Rosen, Paula
    HIGH ENERGY DENSITY PHYSICS, 2010, 6 (04) : 381 - 390
  • [29] PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas
    Blokland, J. W. S.
    van der Holst, B.
    Keppens, R.
    Goedbloed, J. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 509 - 533
  • [30] Numerical simulations of MHD dynamos
    Gómez, DO
    Mininni, P
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2005, 67 (17-18) : 1865 - 1871