Numerical MHD codes for modeling astrophysical flows

被引:9
|
作者
Koldoba, A. V. [1 ,2 ]
Ustyugova, G. V. [3 ]
Lii, P. S. [4 ]
Comins, M. L. [4 ]
Dyda, S. [5 ]
Romanova, M. M. [4 ]
Lovelace, R. V. E. [4 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyy 141700, Moscow Region, Russia
[2] Inst Comp Aided Design RAS, 2nd Brestskaya St,19-18, Moscow 123056, Russia
[3] Keldysh Inst Appl Math RAS, Miusskaya Sq 4, Moscow 125047, Russia
[4] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[5] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[6] Cornell Univ, Dept Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Numerical methods; Codes; Magnetohydrodynamics; APPROXIMATE RIEMANN SOLVER; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; ALGORITHMS; SCHEMES; SYSTEMS; ZEUS-2D; ATHENA;
D O I
10.1016/j.newast.2015.10.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [1] Numerical analysis of peristaltic MHD flows
    Krzeminski, SK
    Smialek, M
    Wlodarczyk, M
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1319 - 1324
  • [2] Numerical simulation of supersonic MHD channel flows
    Xu, Zhengyu
    Lee, Chunhian
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2005, 31 (08): : 893 - 898
  • [3] A 3D MHD model of astrophysical flows: Algorithms, tests and parallelisation
    Caunt, SE
    Korpi, MJ
    ASTRONOMY & ASTROPHYSICS, 2001, 369 (02) : 706 - 728
  • [4] Recent progress in astrophysical MHD
    Stone, James M.
    Gardiner, Thomas A.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 257 - 259
  • [5] On the MHD acceleration of astrophysical jets
    Zanni, C
    Ferrari, A
    Massaglia, S
    Bodo, G
    Rossi, P
    ASTROPHYSICS AND SPACE SCIENCE, 2004, 293 (1-2) : 99 - 106
  • [6] PNe as laboratories of astrophysical MHD
    Frank, A
    Planetary Nebulae as Astronomical Tools, 2005, 804 : 81 - 84
  • [7] On the MHD Acceleration of Astrophysical Jets
    Claudio Zanni
    Attilio Ferrari
    Silvano Massaglia
    Gianluigi Bodo
    Paola Rossi
    Astrophysics and Space Science, 2004, 293 : 99 - 106
  • [8] Historical perspective on astrophysical MHD simulations
    Norman, Michael L.
    COMPUTATIONAL STAR FORMATION, 2011, (270): : 7 - 18
  • [9] Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows
    Layton, W.
    Tran, H.
    Trenchea, C.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (04) : 1083 - 1102
  • [10] Numerical Simulation of MHD Flows in Close Binaries with Strong Magnetic Field
    Zhilkin, A. G.
    Bisikalo, D. V.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS - ASTRONUM 2010, 2011, 444 : 91 - 96