Two-scale elastic parameter identification from noisy macroscopic data

被引:4
|
作者
Schmidt, U. [1 ]
Steinmann, P. [1 ]
Mergheim, J. [1 ]
机构
[1] Univ Erlangen Nurnberg, Chair Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Multiscale; Parameter identification; Numerical homogenization; Noisy data; TO-MACRO TRANSITIONS; DISCRETIZED MICROSTRUCTURES; INVERSE ANALYSIS; FINITE; MODELS; CALIBRATION; BEHAVIOR; DAMAGE;
D O I
10.1007/s00419-015-1096-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-scale parameter identification procedure to identify microscopic elastic parameters from macroscopic data is introduced and thoroughly analyzed. The macroscopic material behavior of microscopically linear elastic heterogeneous materials is described by means of numerical homogenization. The microscopic material parameters are assumed to be unknown and are identified from noisy macroscopic displacement data. Various examples of microscopically heterogeneous materials-with regularly distributed pores, particles, or layers-are considered, and their parameters are identified from different macroscopic experiments by means of a gradient-based optimization procedure. The reliability of the identified parameters is analyzed by their standard deviations and correlation matrices. It was found that the two-scale parameter identification works well for cellular materials, but has to be designed carefully for layered materials. If the homogenized macroscopic material behavior can be described by less material parameters than the microscopic material behavior, as, e.g., for regularly distributed particles, the identification of all microscopic parameters from macroscopic experiments is not possible.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 36 条
  • [31] Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition
    Nadal, E.
    Chinesta, F.
    Diez, P.
    Fuenmayor, F. J.
    Denia, F. D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 296 : 113 - 128
  • [32] Prospect of modeling industrial scale flow batteries - From experimental data to accurate overpotential identification
    Kurilovich, Aleksandr A.
    Trov, Andrea
    Pugach, Mikhail
    Stevenson, Keith J.
    Guarnieri, Massimo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [33] Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment
    Kavetski, Dmitri
    Fenicia, Fabrizio
    Clark, Martyn P.
    WATER RESOURCES RESEARCH, 2011, 47
  • [34] Numerical modeling and neural networks to identify model parameters from piezocone tests: II. Multi-parameter identification from piezocone data
    Obrzud, Rafal F.
    Truty, Andrzej
    Vulliet, Laurent
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2012, 36 (06) : 743 - 779
  • [35] Identification of micro-scale calorimetric devices II - Heat transfer models from two- or three-dimensional analysis
    Auguet, C
    Martorell, F
    Moll, F
    Torra, V
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2002, 70 (01): : 277 - 290
  • [36] Parameter estimation through inverse modelling and comparison of four leaching models using experimental data from two contrasting pesticide field trials in New Zealand
    Sarmah, A. K.
    Close, M. E.
    Dann, R.
    Pang, L.
    Green, S. R.
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2006, 44 (06): : 581 - 597