Two-scale elastic parameter identification from noisy macroscopic data

被引:4
|
作者
Schmidt, U. [1 ]
Steinmann, P. [1 ]
Mergheim, J. [1 ]
机构
[1] Univ Erlangen Nurnberg, Chair Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Multiscale; Parameter identification; Numerical homogenization; Noisy data; TO-MACRO TRANSITIONS; DISCRETIZED MICROSTRUCTURES; INVERSE ANALYSIS; FINITE; MODELS; CALIBRATION; BEHAVIOR; DAMAGE;
D O I
10.1007/s00419-015-1096-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-scale parameter identification procedure to identify microscopic elastic parameters from macroscopic data is introduced and thoroughly analyzed. The macroscopic material behavior of microscopically linear elastic heterogeneous materials is described by means of numerical homogenization. The microscopic material parameters are assumed to be unknown and are identified from noisy macroscopic displacement data. Various examples of microscopically heterogeneous materials-with regularly distributed pores, particles, or layers-are considered, and their parameters are identified from different macroscopic experiments by means of a gradient-based optimization procedure. The reliability of the identified parameters is analyzed by their standard deviations and correlation matrices. It was found that the two-scale parameter identification works well for cellular materials, but has to be designed carefully for layered materials. If the homogenized macroscopic material behavior can be described by less material parameters than the microscopic material behavior, as, e.g., for regularly distributed particles, the identification of all microscopic parameters from macroscopic experiments is not possible.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 36 条
  • [21] Theoretical formulation and computational aspects of a two-scale homogenization scheme combining the TPM and FE2 method for poro-elastic fluid-saturated porous media
    Ricken, Tim
    Schroeder, Joerg
    Bluhm, Joachim
    Maike, Simon
    Bartel, Florian
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 241
  • [22] Material parameter identification of arterial wall layers from homogenised stress-strain data
    Skacel, Pavel
    Bursa, Jiri
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 (01) : 33 - 41
  • [23] Parameter identification of nonlinear systems with time-delay from time-domain data
    Zhang, Tao
    Lu, Zhong-rong
    Liu, Ji-ke
    Liu, Guang
    NONLINEAR DYNAMICS, 2021, 104 (04) : 4045 - 4061
  • [24] Modeling and parameter identification of switched reluctance motors from operating data using neural networks
    Lu, WZ
    Keyhani, A
    Klode, H
    Proca, AB
    IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, 2003, : 1709 - 1713
  • [25] Parameter identification of nonlinear systems with time-delay from time-domain data
    Tao Zhang
    Zhong-rong Lu
    Ji-ke Liu
    Guang Liu
    Nonlinear Dynamics, 2021, 104 : 4045 - 4061
  • [26] Two-step parameter identification of multi-axial cyclic constitutive law of structural steels from cyclic structural responses
    Ohsaki, Makoto
    Do, Bach
    Fujiwara, Jun
    Kimura, Toshiaki
    Yamashita, Takuzo
    STRUCTURES, 2022, 46 : 2014 - 2030
  • [27] Intra-yarn fibre hybridisation effect on homogenised elastic properties and micro and meso-stress analysis of 2D woven laminae: Two-scale FE model
    Yang, Nenglong
    Zou, Zhenmin
    Potluri, Prasad
    Soutis, Constantinos
    Katnam, Kali Babu
    COMPOSITE STRUCTURES, 2024, 344
  • [28] Parameter Identification Problem Based on FRAP Images: From Data Processing to Optimal Design of Photobleaching Experiments
    Matonoha, Ctirad
    Papacek, Stepan
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, HPCSE 2015, 2016, 9611 : 186 - 195
  • [29] Stochastic modeling of the neuronal activity in the subthalamic nucleus and model parameter identification from Parkinson patient data
    Basu, Ishita
    Graupe, Daniel
    Tuninetti, Daniela
    Slavin, Konstantin V.
    BIOLOGICAL CYBERNETICS, 2010, 103 (04) : 273 - 283
  • [30] Stochastic modeling of the neuronal activity in the subthalamic nucleus and model parameter identification from Parkinson patient data
    Ishita Basu
    Daniel Graupe
    Daniela Tuninetti
    Konstantin V. Slavin
    Biological Cybernetics, 2010, 103 : 273 - 283