Quantum self-supervised learning

被引:17
|
作者
Jaderberg, B. [1 ]
Anderson, L. W. [1 ]
Xie, W. [2 ]
Albanie, S. [3 ]
Kiffner, M. [1 ,4 ]
Jaksch, D. [1 ,4 ,5 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Univ Oxford, Dept Engn Sci, Visual Geometry Grp, Oxford, England
[3] Univ Cambridge, Dept Engn, Cambridge, England
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[5] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2022年 / 7卷 / 03期
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
variational quantum algorithms; quantum machine learning; self-supervised learning; deep learning; quantum neural networks; REPRESENTATION; ALGORITHM;
D O I
10.1088/2058-9565/ac6825
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The resurgence of self-supervised learning, whereby a deep learning model generates its own supervisory signal from the data, promises a scalable way to tackle the dramatically increasing size of real-world data sets without human annotation. However, the staggering computational complexity of these methods is such that for state-of-the-art performance, classical hardware requirements represent a significant bottleneck to further progress. Here we take the first steps to understanding whether quantum neural networks (QNNs) could meet the demand for more powerful architectures and test its effectiveness in proof-of-principle hybrid experiments. Interestingly, we observe a numerical advantage for the learning of visual representations using small-scale QNN over equivalently structured classical networks, even when the quantum circuits are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify unseen images on the ibmq_paris quantum computer and find that current noisy devices can already achieve equal accuracy to the equivalent classical model on downstream tasks.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [2] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [3] Self-supervised Learning for CT Deconvolution
    Sudhakar, Prasad
    Langoju, Rajesh
    Agrawal, Utkarsh
    Patil, Bhushan D.
    Narayanan, Ajay
    Chaugule, Vinay
    Amilneni, Vinod
    Cheerankal, Paul
    Das, Bipul
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [4] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [5] Self-Supervised Learning for User Localization
    Dash, Ankan
    Gu, Jingyi
    Wang, Guiling
    Ansari, Nirwan
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 886 - 890
  • [6] Self-Adaptive Training: Bridging Supervised and Self-Supervised Learning
    Huang, Lang
    Zhang, Chao
    Zhang, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1362 - 1377
  • [7] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [8] Reduce the Difficulty of Incremental Learning With Self-Supervised Learning
    Guan, Linting
    Wu, Yan
    IEEE ACCESS, 2021, 9 : 128540 - 128549
  • [9] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [10] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471