Jensen's operator inequality for functions of several variables

被引:24
作者
Araki, H [1 ]
Hansen, F
机构
[1] Sci Univ Tokyo, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
[2] Univ Copenhagen, Inst Econ, DK-1455 Copenhagen K, Denmark
关键词
D O I
10.1090/S0002-9939-00-05371-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The operator convex functions of several variables are characterized in terms of a non-commutative generalization of Jensen's inequality, extending previous results of F. Hansen and G.K. Pedersen for functions of one variable and of F. Hansen for functions of two variables.
引用
收藏
页码:2075 / 2084
页数:10
相关论文
共 9 条
[1]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[2]   MATRIX CONVEXITY OF FUNCTIONS OF 2 VARIABLES [J].
AUJLA, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 194 :149-160
[3]  
Halmos, 2012, HILBERT SPACE PROBLE, V19
[6]   OPERATOR-INEQUALITY [J].
HANSEN, F .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :249-250
[7]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[8]  
Koranyi A., 1961, Trans. Am. Math. Soc, V101, P520, DOI [10.2307/1993476, 10.1090/S0002-9947-1961-0136765-6, DOI 10.1090/S0002-9947-1961-0136765-6]
[9]   EXTREME N-TUPLES OF ELEMENTS IN C-STAR-ALGEBRAS [J].
PEDERSEN, GK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1987, 19 :264-270