Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

被引:39
作者
Fang, Yuanxing [1 ]
Lee, Wei Cheat [1 ]
Canciani, Giacomo E. [1 ]
Draper, Thomas C. [1 ]
Al-Bawi, Zainab F. [1 ]
Bedi, Jasbir S. [2 ]
Perry, Christopher C. [3 ]
Chen, Qiao [1 ]
机构
[1] Univ Sussex, Dept Chem, Sch Life Sci, Brighton BN1 9QJ, E Sussex, England
[2] Guru Angad Dev Vet & Anim Sci Univ, Sch Publ Hlth & Zoonoses, Ludhiana 141004, Punjab, India
[3] Loma Linda Univ, Sch Med, Div Biochem, Loma Linda, CA 92350 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2015年 / 202卷
关键词
Electrophoretic deposition; Thickness; Electrospinning; WO3; nanofiber; Photoelectrochemical water splitting; TUNGSTEN TRIOXIDE FILMS; PHOTOELECTROCHEMICAL PROPERTY; HYDROGEN-PRODUCTION; METHANOL OXIDATION; WET IMPREGNATION; CERAMIC COATINGS; GEL ROUTE; OXIDE; PERFORMANCE; PHOTOANODES;
D O I
10.1016/j.mseb.2015.09.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrophoretic deposition (EPD) of ground electrospun WO3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 mu m. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 61 条
[51]   Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and v-doped TiO2 thin-film electrode materials [J].
Sene, JJ ;
Zeltner, WA ;
Anderson, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (07) :1597-1603
[52]   WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach [J].
Sivula, Kevin ;
Le Formal, Florian ;
Graetzel, Michael .
CHEMISTRY OF MATERIALS, 2009, 21 (13) :2862-2867
[53]   Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings [J].
Wang, YC ;
Leu, IC ;
Hon, MH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (01) :84-88
[54]   Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis [J].
Woodhouse, Michael ;
Parkinson, B. A. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :197-210
[55]   Electrodeposition of three-dimensional titania photonic crystals from holographically patterned microporous polymer templates [J].
Xu, Yongan ;
Zhu, Xuelian ;
Dan, Yaping ;
Moon, Jun Hyuk ;
Chen, Vincent W. ;
Johnson, Alan T. ;
Perry, Joseph W. ;
Yang, Shu .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1816-1823
[56]   Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film [J].
Yagi, Masayuki ;
Maruyama, Syou ;
Sone, Koji ;
Nagai, Keiji ;
Norimatsu, Takayoshi .
JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (01) :175-182
[57]   Tungsten trioxide films with controlled morphology and strong photocatalytic activity via a simple sol-gel route [J].
Yang, Bin ;
Barnes, Piers R. F. ;
Zhang, Yingjie ;
Luca, Vittorio .
CATALYSIS LETTERS, 2007, 118 (3-4) :280-284
[58]   Strong photoresponse of nanostructured tungsten trioxide films prepared via a sol-gel route [J].
Yang, Bin ;
Barnes, Piers R. F. ;
Bertram, Willem ;
Luca, Vittorio .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (26) :2722-2729
[59]   Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction [J].
Zeng, J. ;
Francia, C. ;
Gerbaldi, C. ;
Baglio, V. ;
Specchia, S. ;
Arico, A. S. ;
Spinelli, P. .
ELECTROCHIMICA ACTA, 2013, 94 :80-91
[60]   Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers [J].
Zhitomirsky, I .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1998, 18 (07) :849-856