Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

被引:39
作者
Fang, Yuanxing [1 ]
Lee, Wei Cheat [1 ]
Canciani, Giacomo E. [1 ]
Draper, Thomas C. [1 ]
Al-Bawi, Zainab F. [1 ]
Bedi, Jasbir S. [2 ]
Perry, Christopher C. [3 ]
Chen, Qiao [1 ]
机构
[1] Univ Sussex, Dept Chem, Sch Life Sci, Brighton BN1 9QJ, E Sussex, England
[2] Guru Angad Dev Vet & Anim Sci Univ, Sch Publ Hlth & Zoonoses, Ludhiana 141004, Punjab, India
[3] Loma Linda Univ, Sch Med, Div Biochem, Loma Linda, CA 92350 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2015年 / 202卷
关键词
Electrophoretic deposition; Thickness; Electrospinning; WO3; nanofiber; Photoelectrochemical water splitting; TUNGSTEN TRIOXIDE FILMS; PHOTOELECTROCHEMICAL PROPERTY; HYDROGEN-PRODUCTION; METHANOL OXIDATION; WET IMPREGNATION; CERAMIC COATINGS; GEL ROUTE; OXIDE; PERFORMANCE; PHOTOANODES;
D O I
10.1016/j.mseb.2015.09.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrophoretic deposition (EPD) of ground electrospun WO3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 mu m. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 61 条
[31]   Layered WO3/TiO2 nanostructures with enhanced photocurrent densities [J].
Khare, Chinmay ;
Sliozberg, Kirill ;
Meyer, Robert ;
Savan, Alan ;
Schuhmann, Wolfgang ;
Ludwig, Alfred .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (36) :15954-15964
[32]   A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting [J].
Khaselev, O ;
Turner, JA .
SCIENCE, 1998, 280 (5362) :425-427
[33]   Electrophoretic deposition (EPD)Of WO3 nanorods for electrochromic application [J].
Khoo, Eugene ;
Lee, Pooi See ;
Ma, Jan .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (05) :1139-1144
[34]   Preparation of hybrid WO3-TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance [J].
Lai, Chin Wei ;
Sreekantan, Srimala .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) :2156-2166
[35]   Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance [J].
Lai, Chin Wei ;
Sreekantan, Srimala .
ELECTROCHIMICA ACTA, 2013, 87 :294-302
[36]   Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes [J].
Lee, Seung-Hyun Anna ;
Zhao, Yixin ;
Hernandez-Pagan, Emil A. ;
Blasdel, Landy ;
Youngblood, W. Justin ;
Mallouk, Thomas E. .
FARADAY DISCUSSIONS, 2012, 155 :165-176
[37]   Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films [J].
Lee, SH ;
Cheong, HM ;
Tracy, CE ;
Mascarenhas, A ;
Pitts, JR ;
Jorgensen, G ;
Deb, SK .
APPLIED PHYSICS LETTERS, 2000, 76 (26) :3908-3910
[38]   Marangoni ring-templated vertically aligned ZnO nanotube arrays with enhanced photocatalytic hydrogen production [J].
Lee, Wei Cheat ;
Fang, Yuanxing ;
Kler, Rantej ;
Canciani, Giacomo E. ;
Draper, Thomas C. ;
Al-Abdullah, Zainab T. Y. ;
Alfadul, Sulaiman M. ;
Perry, Christopher C. ;
He, Heyong ;
Chen, Qiao .
MATERIALS CHEMISTRY AND PHYSICS, 2015, 149 :12-16
[39]   Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method [J].
Li, Wenzhang ;
Li, Jie ;
Wang, Xuan ;
Ma, Jun ;
Chen, Qiyuan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (24) :13137-13145
[40]   Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofi ber- Templated TiO 2 Photoanodes [J].
Li, Zhaodong ;
Yao, Chunhua ;
Yu, Yanhao ;
Cai, Zhiyong ;
Wang, Xudong .
ADVANCED MATERIALS, 2014, 26 (14) :2262-2267