GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC EQUATION ON COMPLETE NONCOMPACT RIEMANNIAN MANIFOLD

被引:5
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Osun State Coll Technol, Dept Math & Stat, PMB 1011, Esa Oke, Nigeria
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 02期
关键词
Gradient estimates; Harnack inequality; elliptic equations; KERNEL;
D O I
10.7153/jmi-2018-12-29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M,g) be an n-dimensional complete noncompact Riemannian manifold (with possibly empty boundary). We derive local and global gradient estimates on positive solutions u(x) to the following nonlinear elliptic equation Delta u(x) + au(3)(x) + lambda(x)u(x) = 0, x is an element of M where a and s are constants, a is an element of R \ {0}, s > 1 and lambda(x) is bounded on M. Our gradient estimates yield differential Harnack inequalities as an application. This paper extends results of Y. Yang [17] and J. Li [11, Theorem 3.1].
引用
收藏
页码:391 / 402
页数:12
相关论文
共 19 条
[1]  
ABOLARINWA A., LI YAU TYPE ESTIMATE
[2]  
Abolarinwa A., 2015, Elctron. J. Differ. Equ, V2015, P1
[3]  
[Anonymous], 1994, C P LECT NOTES GEOME
[4]  
BAILESTEANU M., ARXIV151100197V1
[5]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[7]  
Chen L, 2010, ACTA MATH SCI, V30, P1614
[8]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[9]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[10]   Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2010, 94 (03) :265-275